IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1798-d1372566.html
   My bibliography  Save this article

The Feasibility Study of In Situ Conversion of Oil Shale Based on Calcium-Oxide-Based Composite Materia Hydration Exothermic Reaction

Author

Listed:
  • Shiwei Ma

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shouding Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhaobin Zhang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Tao Xu

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Bo Zheng

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yanzhi Hu

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Guanfang Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiao Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Oil shale, as a vast potential resource, is considered an important alternative energy source, and its effective development and economic utilization are of significant importance in alleviating the contradiction between energy supply and demand. Presently, the in situ conversion technology for oil shale has gained significant global attention, with numerous extraction methods undergoing active research and development. One of these methods is the in situ conversion of oil shale based on the hydration reaction of calcium-oxide-based composite material (CaO-CM). This approach harnesses the heat produced by the reaction between CaO-CM and water as a heat source for the pyrolysis of oil shale. This paper conducted experiments to assess the feasibility of temperature associated with this method. The feasibility study mainly includes two aspects: First, it is necessary to investigate whether the temperature generated by the hydration reaction of CaO-CM can meet the temperature requirements for the pyrolysis of oil shale. Through pyrolysis experiments of Xinjiang oil shale, the minimum temperature required for oil shale pyrolysis was determined to be 330 °C. High-temperature and high-pressure reaction vessels were employed to explore the temperature generated by the hydration reaction of CaO-CM. The results show that with the increase in environment pressure, environment temperature, and reaction mass, the maximum temperature generated by the hydration reaction of CaO-CM also increases (reach 455.5 °C), meeting the temperature requirements for the pyrolysis of oil shale. Second, the study evaluates whether the hydration reaction of CaO-CM can induce pyrolysis hydrocarbons of the oil shale. Through the pyrolysis experiments of oil shale based on the hydration reaction of CaO-CM, the changes in the content of pyrolysis hydrocarbons (S 2 ) in oil shale before and after pyrolysis are measured. The results show that under 10 MPa pressure, the content of pyrolysis hydrocarbons in the oil shale decreased from 40.96 mg/g to 0.08 mg/g after pyrolysis. This confirms the feasibility of the temperature conditions for the in situ conversion of oil shale based on the hydration reaction of CaO-CM.

Suggested Citation

  • Shiwei Ma & Shouding Li & Zhaobin Zhang & Tao Xu & Bo Zheng & Yanzhi Hu & Guanfang Li & Xiao Li, 2024. "The Feasibility Study of In Situ Conversion of Oil Shale Based on Calcium-Oxide-Based Composite Materia Hydration Exothermic Reaction," Energies, MDPI, vol. 17(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1798-:d:1372566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1, August.
    2. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    3. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    4. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    5. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    6. Kang, Zhiqin & Jiang, Xing & Wang, Lei & Yang, Dong & Ma, Yulin & Zhao, Yangsheng, 2023. "Comparative investigation of in situ hydraulic fracturing and high-temperature steam fracturing tests for meter-scale oil shale," Energy, Elsevier, vol. 281(C).
    7. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    8. Lihong Yang & Zhao Liu & Hao Zeng & Jianzheng Su & Yiwei Wang & Xudong Chen & Wei Guo, 2021. "Influence of Gas Flooding Pressure on Groundwater Flow during Oil Shale In Situ Exploitation," Energies, MDPI, vol. 14(24), pages 1-12, December.
    9. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.
    10. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    11. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    12. Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
    13. Shi, Yu & Zhang, Yulong & Song, Xianzhi & Cui, Qiliang & Lei, Zhihong & Song, Guofeng, 2023. "Injection energy utilization efficiency and production performance of oil shale in-situ exploitation," Energy, Elsevier, vol. 263(PB).
    14. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    15. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    16. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    17. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    18. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    19. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    20. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1798-:d:1372566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.