Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125213
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jingjing & Dou, Binlin & Zhang, Hua & Zhang, Hao & Chen, Haisheng & Xu, Yujie & Wu, Chunfei, 2021. "Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass," Energy, Elsevier, vol. 226(C).
- Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
- Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
- Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
- Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
- Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
- Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).
- Guo, Wei & Fan, Cunhan & Liu, Zhao & Zhang, Xu & Sun, Youhong & Li, Qiang, 2024. "Fates of pyrolysis oil components in the non-isothermal propped fractures during oil shale in situ pyrolysis exploitation," Energy, Elsevier, vol. 288(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
- Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
- Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
- Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
- Shi, Yu & Zhang, Yulong & Song, Xianzhi & Cui, Qiliang & Lei, Zhihong & Song, Guofeng, 2023. "Injection energy utilization efficiency and production performance of oil shale in-situ exploitation," Energy, Elsevier, vol. 263(PB).
- Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
- Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
- Zhang, Xu & Guo, Wei & Pan, Junfan & Zhu, Chaofan & Deng, Sunhua, 2024. "In-situ pyrolysis of oil shale in pressured semi-closed system: Insights into products characteristics and pyrolysis mechanism," Energy, Elsevier, vol. 286(C).
- Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
- Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
- Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
- Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
- Guo, Wei & Zhang, Xu & Sun, Youhong & Li, Qiang & Liu, Zhao, 2023. "Migration mechanism of pyrolysis oil during oil shale in situ pyrolysis exploitation," Energy, Elsevier, vol. 285(C).
- Guo, Wei & Yang, Qinchuan & Deng, Sunhua & Li, Qiang & Sun, Youhong & Su, Jianzheng & Zhu, Chaofan, 2022. "Experimental study of the autothermic pyrolysis in-situ conversion process (ATS) for oil shale recovery," Energy, Elsevier, vol. 258(C).
- Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
- Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.
- Dazhong Ren & Zhendong Wang & Fu Yang & Hao Zeng & Chenyuan Lü & Han Wang & Senhao Wang & Shaotao Xu, 2024. "Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China," Energies, MDPI, vol. 17(13), pages 1-21, June.
- Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
- Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
More about this item
Keywords
Water vapor; Shale oil; Modification distance; Oil quality upgrading; Light component;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s036054422202103x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.