IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026007.html
   My bibliography  Save this article

Injection energy utilization efficiency and production performance of oil shale in-situ exploitation

Author

Listed:
  • Shi, Yu
  • Zhang, Yulong
  • Song, Xianzhi
  • Cui, Qiliang
  • Lei, Zhihong
  • Song, Guofeng

Abstract

Oil shale in-situ conversion is an effective and promising exploitation method. The most concerned problem of oil shale in-situ conversion is how to exploit maximum oil and gas by injecting the least energy. However, the relationship between injection energy utilization efficiency and productivity under different operational conditions remain unclear. In this paper, based on a multiphase flow, heat transfer and chemical reaction numerical model, evolution of kerogen pyrolysis with reservoir temperature distribution is thoroughly analyzed. Aims at injection energy utilization efficiency and productivity, effects of injection energy rate, well shut-in measure, reservoir pressure and well spacing on the production performance of the oil shale in-situ exploitation are investigated. Results show that the useless heating region exists during kerogen pyrolysis, which significantly reduces the energy utilization efficiency. A shut-in measure can slightly improve the energy utilization efficiency but lower oil output, thus not a very effective measure to solve the useless heating problem. Under the same energy injection rate, a higher injection temperature and lower injection flow rate will simultaneously obtain higher oil production rate, oil output, and energy utilization efficiency. Furthermore, a larger reservoir pressure and well spacing of 40 m–50 m are recommended to obtain higher oil production rate and output. Results provide meaningful suggestions for optimizing operational parameters in view of injection energy utilization efficiency and oil output.

Suggested Citation

  • Shi, Yu & Zhang, Yulong & Song, Xianzhi & Cui, Qiliang & Lei, Zhihong & Song, Guofeng, 2023. "Injection energy utilization efficiency and production performance of oil shale in-situ exploitation," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026007
    DOI: 10.1016/j.energy.2022.125714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Ayed, Omar S. & Matouq, M. & Anbar, Z. & Khaleel, Adnan M. & Abu-Nameh, Eyad, 2010. "Oil shale pyrolysis kinetics and variable activation energy principle," Applied Energy, Elsevier, vol. 87(4), pages 1269-1272, April.
    2. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    3. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    4. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryelin Josefina Briceño Montilla & Shouding Li & Zhaobin Zhang & Xiao Li & Yiming Sun & Shiwei Ma, 2023. "Theoretical Analysis of the Effect of Electrical Heat In Situ Injection on the Kerogen Decomposition for the Development of Shale Oil Deposits," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Huang, Xudong & Kang, Zhiqin & Zhao, Jing & Wang, Guoying & Zhang, Hongge & Yang, Dong, 2023. "Experimental investigation on micro-fracture evolution and fracture permeability of oil shale heated by water vapor," Energy, Elsevier, vol. 277(C).
    3. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    3. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    5. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    6. Hao Wang & Jianzheng Su & Jingyi Zhu & Zhaozhong Yang & Xianglong Meng & Xiaogang Li & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Retorting Optimization under In Situ Microwave Heating Considering Electromagnetics, Heat Transfer, and Chemical Reactions Coupling," Energies, MDPI, vol. 15(16), pages 1-14, August.
    7. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    8. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    9. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    10. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    11. Xu, HengYu & Yu, Hao & Fan, JingCun & Xia, Jun & Liu, He & Wu, HengAn, 2022. "Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process," Energy, Elsevier, vol. 242(C).
    12. Xu, WenLong & Yu, Hao & Micheal, Marembo & Huang, HanWei & Liu, He & Wu, HengAn, 2023. "An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery," Energy, Elsevier, vol. 263(PA).
    13. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    14. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.
    15. Pan, Luwei & Dai, Fangqin & Li, Guangqiang & Liu, Shuang, 2015. "A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale," Energy, Elsevier, vol. 86(C), pages 749-757.
    16. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    17. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    18. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    19. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    20. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.