IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p941-d1340546.html
   My bibliography  Save this article

Digitalization, Industry 4.0, Data, KPIs, Modelization and Forecast for Energy Production in Hydroelectric Power Plants: A Review

Author

Listed:
  • Crescenzo Pepe

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy)

  • Silvia Maria Zanoli

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy)

Abstract

Intelligent water usage is required in order to target the challenging goals for 2030 and 2050. Hydroelectric power plants represent processes wherein water is exploited as a renewable resource and a source for energy production. Hydroelectric power plants usually include reservoirs, valves, gates, and energy production devices, e.g., turbines. In this context, monitoring and maintenance policies together with control and optimization strategies, at the different levels of the automation hierarchy, may represent strategic tools and drivers for energy efficiency improvement. Nowadays, these strategies rely on different basic concepts and elements, which must be assessed and investigated in order to provide a reliable background. This paper focuses on a review of the state of the art associated with these basic concepts and elements, i.e., digitalization, Industry 4.0, data, KPIs, modelization, and forecast.

Suggested Citation

  • Crescenzo Pepe & Silvia Maria Zanoli, 2024. "Digitalization, Industry 4.0, Data, KPIs, Modelization and Forecast for Energy Production in Hydroelectric Power Plants: A Review," Energies, MDPI, vol. 17(4), pages 1-35, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:941-:d:1340546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    2. Xiaoli Zhang & Yong Peng & Wei Xu & Bende Wang, 2019. "An Optimal Operation Model for Hydropower Stations Considering Inflow Forecasts with Different Lead-Times," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 173-188, January.
    3. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    4. Jennifer Kreklow & Björn Tetzlaff & Gerald Kuhnt & Benjamin Burkhard, 2019. "A Rainfall Data Intercomparison Dataset of RADKLIM, RADOLAN, and Rain Gauge Data for Germany," Data, MDPI, vol. 4(3), pages 1-16, August.
    5. Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.
    6. Jessica B. Heluany & Ricardo Galvão, 2023. "IEC 62443 Standard for Hydro Power Plants," Energies, MDPI, vol. 16(3), pages 1-16, February.
    7. Jie Chen & François Brissette, 2015. "Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3329-3342, July.
    8. Fernando Mainardi Fan & Dirk Schwanenberg & Rodolfo Alvarado & Alberto Assis dos Reis & Walter Collischonn & Steffi Naumman, 2016. "Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3609-3625, August.
    9. Augusto Cesar Campos de Souza Machado & Geraldo Lucio Tiago Filho & Thiago Modesto de Abreu & Francesco Facchini & Robson Francisco da Silva & Luiz Fernando Rodrigues Pinto, 2023. "Use of Balanced Scorecard (BSC) Performance Indicators for Small-Scale Hydropower Project Attractiveness Analysis," Energies, MDPI, vol. 16(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoling Ding & Xiaocong Mo & Jianzhong Zhou & Sheng Bi & Benjun Jia & Xiang Liao, 2021. "Long-Term Scheduling of Cascade Reservoirs Considering Inflow Forecasting Uncertainty Based on a Disaggregation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 645-660, January.
    2. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    3. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    4. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    5. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    6. Jônatas Belotti & Hugo Siqueira & Lilian Araujo & Sérgio L. Stevan & Paulo S.G. de Mattos Neto & Manoel H. N. Marinho & João Fausto L. de Oliveira & Fábio Usberti & Marcos de Almeida Leone Filho & Att, 2020. "Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants," Energies, MDPI, vol. 13(18), pages 1-22, September.
    7. Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
    8. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    9. Khosravi, A. & Santasalo-Aarnio, A. & Syri, S., 2021. "Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil," Energy, Elsevier, vol. 234(C).
    10. Cao, Yan & Taslimi, Melika S. & Dastjerdi, Sajad Maleki & Ahmadi, Pouria & Ashjaee, Mehdi, 2022. "Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply," Renewable Energy, Elsevier, vol. 187(C), pages 1082-1099.
    11. Richard Arsenault & Marco Latraverse & Thierry Duchesne, 2016. "An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4363-4380, September.
    12. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    13. Tatiane Silva Costa & Marcelo Gradella Villalva, 2020. "Technical Evaluation of a PV-Diesel Hybrid System with Energy Storage: Case Study in the Tapajós-Arapiuns Extractive Reserve, Amazon, Brazil," Energies, MDPI, vol. 13(11), pages 1-22, June.
    14. Keifa Vamba Konneh & Hasan Masrur & Mohammad Lutfi Othman & Hiroshi Takahashi & Narayanan Krishna & Tomonobu Senjyu, 2021. "Multi-Attribute Decision-Making Approach for a Cost-Effective and Sustainable Energy System Considering Weight Assignment Analysis," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    15. V. Ramaswamy & F. Saleh, 2020. "Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 989-1004, February.
    16. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    17. Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2017. "The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    18. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    19. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    20. Akbar Maleki & Zahra Eskandar Filabi & Mohammad Alhuyi Nazari, 2022. "Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker," Sustainability, MDPI, vol. 14(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:941-:d:1340546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.