IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p871-d1338259.html
   My bibliography  Save this article

Improving Carrier Transport Behavior in a Bilayer ETL for Enhanced Efficiency of Perovskite Solar Cells: An Investigation

Author

Listed:
  • Rui-Yun Hsu

    (Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan)

  • Yeong-Lin Lai

    (Department of Mechatronics Engineering, National Changhua University of Education, Changhua 500, Taiwan)

  • Yung-Hua Chou

    (Department of Mechatronics Engineering, National Changhua University of Education, Changhua 500, Taiwan)

  • Wei-Jhe Syu

    (Department of Mechatronics Engineering, National Changhua University of Education, Changhua 500, Taiwan)

Abstract

Perovskite solar cells (PSCs) are currently among the most promising solar cell technologies. A key component influencing their efficiency and stability is the electron transport layer (ETL). This study examined the carrier transport properties of various ETL materials, including TiO 2 , SnO 2 , and TiO 2 /SnO 2 bilayer ETLs, to understand their effects on PSC performance. The study proposed a hypothesis that the bilayer design, integrating TiO 2 and SnO 2 , enhances performance, and it used experimental results to substantiate this. Through analysis and discussion of the ETLs, the interface between perovskite (PVSK) and ETLs, and other PSC components, we gained insights into the carrier transport dynamics in PSCs with different ETL configurations. Our findings indicate that the TiO 2 /SnO 2 bilayer ETL structure can significantly improve PSC performance by reducing current leakage, improving carrier transport, and minimizing carrier recombination. This enhancement is quantified by the increase in efficiency from 13.58% with a single-layer TiO 2 ETL to 20.49% with the bilayer ETL.

Suggested Citation

  • Rui-Yun Hsu & Yeong-Lin Lai & Yung-Hua Chou & Wei-Jhe Syu, 2024. "Improving Carrier Transport Behavior in a Bilayer ETL for Enhanced Efficiency of Perovskite Solar Cells: An Investigation," Energies, MDPI, vol. 17(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:871-:d:1338259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eui Hyuk Jung & Nam Joong Jeon & Eun Young Park & Chan Su Moon & Tae Joo Shin & Tae-Youl Yang & Jun Hong Noh & Jangwon Seo, 2019. "Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)," Nature, Nature, vol. 567(7749), pages 511-515, March.
    2. Jianqin Li & Feng Wen & Shenghao Wang, 2023. "Perovskite Tandem Solar Cell Technologies," Energies, MDPI, vol. 16(4), pages 1-3, February.
    3. Ahmed Saeed & Mostafa M. Salah & Abdelhalim Zekry & Mohamed Mousa & Ahmed Shaker & Mohamed Abouelatta & Fathy Z. Amer & Roaa I. Mubarak & Dalia S. Louis, 2023. "Investigation of High-Efficiency and Stable Carbon-Perovskite/Silicon and Carbon-Perovskite/CIGS-GeTe Tandem Solar Cells," Energies, MDPI, vol. 16(4), pages 1-14, February.
    4. Renxing Lin & Yurui Wang & Qianwen Lu & Beibei Tang & Jiayi Li & Han Gao & Yuan Gao & Hongjiang Li & Changzeng Ding & Jin Wen & Pu Wu & Chenshuaiyu Liu & Siyang Zhao & Ke Xiao & Zhou Liu & Changqi Ma , 2023. "All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction," Nature, Nature, vol. 620(7976), pages 994-1000, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zaheen Uddin & Junhui Ran & Elias Stathatos & Bin Yang, 2023. "Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering," Energies, MDPI, vol. 16(9), pages 1-12, April.
    3. Kalavala Shivaprakash Srivishnu & Prasutha Rani Markapudi & Senthilarasu Sundaram & Lingamallu Giribabu, 2023. "Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances," Energies, MDPI, vol. 16(2), pages 1-25, January.
    4. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    5. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    8. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    9. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    11. Daming Zheng & Florian Raffin & Polina Volovitch & Thierry Pauporté, 2022. "Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.
    13. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Sreeram Valsalakumar & Anurag Roy & Tapas K. Mallick & Justin Hinshelwood & Senthilarasu Sundaram, 2022. "An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development," Energies, MDPI, vol. 16(1), pages 1-29, December.
    15. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. Yu Pu & Haijun Su & Congcong Liu & Min Guo & Lin Liu & Hengzhi Fu, 2023. "A Review on Buried Interface of Perovskite Solar Cells," Energies, MDPI, vol. 16(13), pages 1-30, June.
    19. Sara Pescetelli & Antonio Agresti & George Viskadouros & Stefano Razza & Konstantinos Rogdakis & Ioannis Kalogerakis & Emmanuel Spiliarotis & Enrico Leonardi & Paolo Mariani & Luca Sorbello & Marco Pi, 2022. "Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm," Nature Energy, Nature, vol. 7(7), pages 597-607, July.
    20. Dongdong Xu & Zhiming Gong & Yue Jiang & Yancong Feng & Zhen Wang & Xingsen Gao & Xubing Lu & Guofu Zhou & Jun-Ming Liu & Jinwei Gao, 2022. "Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:871-:d:1338259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.