IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6313-d1543937.html
   My bibliography  Save this article

Driving Profile Optimization for Energy Management in the Formula Student Técnico Prototype

Author

Listed:
  • Tomás R. Pires

    (Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

  • João F. P. Fernandes

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

  • Paulo J. Costa Branco

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

Abstract

This study addresses the challenge of optimizing energy management in the electric vehicle industry, specifically focusing on motorsport. It particularly targets optimizing energy management during an endurance event at the Formula Student competition. The research involves detailed simulation of a complete endurance event, including developing precise track and vehicle models and their application in real-time energy management of our motorsport vehicle. The primary objective is to develop an energy reference profile that optimizes point scoring following the event’s specific rules. The energy reference profile serves as a strategic guideline for energy consumption and its regeneration throughout the endurance event. What sets this study apart is its emphasis on the real-time feedback controller’s implementation in the Formula Student prototype, FST12, specifically during the endurance event. This controller dynamically regulates the inverter’s power output, ensuring the vehicle closely follows the pre-established energy reference profile. This real-time energy management approach enhances overall performance by optimizing energy utilization for maximum scoring potential. The developed distance estimation method presented an error of less than 0.7% compared to experimental measurements. The Formula Student prototype, FST12, underwent experimental validation on a real 20 km closed-loop track. Results showed that the optimized strategy can be implemented with less than 0.5% of error in energy consumption and 6.8% of error in the obtained competing points.

Suggested Citation

  • Tomás R. Pires & João F. P. Fernandes & Paulo J. Costa Branco, 2024. "Driving Profile Optimization for Energy Management in the Formula Student Técnico Prototype," Energies, MDPI, vol. 17(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6313-:d:1543937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    2. Gobbi, Massimiliano & Sattar, Aqeab & Palazzetti, Roberto & Mastinu, Gianpiero, 2024. "Traction motors for electric vehicles: Maximization of mechanical efficiency – A review," Applied Energy, Elsevier, vol. 357(C).
    3. Ali Sinan Cabuk & Ozgur Ustun, 2024. "In Search of the Proper Dimensions of the Optimum In-Wheel Permanent Magnet Synchronous Motor Design," Energies, MDPI, vol. 17(5), pages 1-17, February.
    4. Zhang, Bo & Zhang, Jiangyan & Xu, Fuguo & Shen, Tielong, 2020. "Optimal control of power-split hybrid electric powertrains with minimization of energy consumption," Applied Energy, Elsevier, vol. 266(C).
    5. Liu, Xuze & Fotouhi, Abbas & Auger, Daniel J., 2020. "Optimal energy management for formula-E cars with regulatory limits and thermal constraints," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dapai Shi & Junjie Guo & Kangjie Liu & Qingling Cai & Zhenghong Wang & Xudong Qu, 2023. "Research on an Improved Rule-Based Energy Management Strategy Enlightened by the DP Optimization Results," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    2. Wang, Wenhao & Tang, Aihong & Wei, Feng & Yang, Huiyuan & Xinran, Li & Peng, Jiao, 2025. "Electric vehicle charging load forecasting considering weather impact," Applied Energy, Elsevier, vol. 383(C).
    3. Xingxing Wang & Jiaying Ji & Junyi Li & Zhou Zhao & Hongjun Ni & Yu Zhu, 2025. "Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks," Sustainability, MDPI, vol. 17(13), pages 1-30, July.
    4. Chen, Yong & Liu, Chunhua, 2025. "Energy efficient optimization for multi-motor system with novel inverter topology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    5. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    6. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    7. Singh, Somendra Pratap & Hanif, Athar & Ahmed, Qadeer & Meijer, Maarten & Lahti, John, 2022. "Optimal management of electric hotel loads in mild hybrid heavy duty truck," Applied Energy, Elsevier, vol. 326(C).
    8. kanouni, Badreddine & Laib, Abdelbaset & Necaibia, Salah & Krama, Abdelbasset & Guerrero, Josep M., 2025. "Pied kingfisher optimizer for accurate parameter extraction in proton exchange membrane fuel cell," Energy, Elsevier, vol. 325(C).
    9. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    10. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    11. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    12. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    13. Ma, Bin & Li, Peng-Hui, 2025. "Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control," Energy, Elsevier, vol. 324(C).
    14. Shangzhe Yu & Dominik Schäfer & Shidong Zhang & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "A Three-Dimensional Time-Dependent Model of the Degradation Caused by Chromium Poisoning in a Solid Oxide Fuel Cell Stack," Energies, MDPI, vol. 16(23), pages 1-23, November.
    15. Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
    16. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Impact of the hybrid electric architecture on the performance and emissions of a delivery truck with a dual-fuel RCCI engine," Applied Energy, Elsevier, vol. 301(C).
    17. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    18. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    19. Hajji, M. & El Alem, H. & Labrim, H. & Benyoussef, A. & Benchrifa, R. & Mounkachi, O., 2025. "Dynamic modeling and analysis of PV-Wind/Fuel Cell/TEG hybrid system including metal hydride tank for hydrogen upgrading," Energy, Elsevier, vol. 324(C).
    20. Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6313-:d:1543937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.