IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5843-d1526594.html
   My bibliography  Save this article

Consequences of Non-Compliance with Technological Procedures in the Realisation of Construction Objects from the Point of View of Heat Consumption for Heating—A Case Study on Selected Construction Sites in the Slovak Republic

Author

Listed:
  • Ján Hlina

    (Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 810 05 Bratislava, Slovakia)

  • Peter Makýš

    (Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 810 05 Bratislava, Slovakia)

  • Patrik Šťastný

    (Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 810 05 Bratislava, Slovakia)

  • Lucia Paulovičová

    (Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 810 05 Bratislava, Slovakia)

Abstract

This article focuses on the energy performance of buildings with an emphasis on the consequences of non-compliance with technological practices during the building process. We analyse the impact of construction deficiencies on the consumption of heat for heating, focusing on specific case studies of selected building constructions in the Slovak Republic. The results show that non-compliance with prescribed technological standards and procedures leads to significant deterioration in the building’s energy efficiency, which is manifested in increased heat consumption and higher operating costs. The findings of this study have key importance for future construction projects as they offer valuable recommendations for improving energy standards and construction quality, thus contributing to a more sustainable and efficient building process. When designing buildings with near-zero energy demand, it is necessary to eliminate all risks in the project that arise during the preparation and design itself, as well as during implementation.

Suggested Citation

  • Ján Hlina & Peter Makýš & Patrik Šťastný & Lucia Paulovičová, 2024. "Consequences of Non-Compliance with Technological Procedures in the Realisation of Construction Objects from the Point of View of Heat Consumption for Heating—A Case Study on Selected Construction Sit," Energies, MDPI, vol. 17(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5843-:d:1526594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    2. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    3. Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).
    4. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    6. Cichowicz, Robert & Jerominko, Tomasz, 2023. "Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe)," Energy, Elsevier, vol. 282(C).
    7. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengchen Zhao & Santiago Gomez-Rosero & Hooman Nouraei & Craig Zych & Miriam A. M. Capretz & Ayan Sadhu, 2024. "Toward Prediction of Energy Consumption Peaks and Timestamping in Commercial Supermarkets Using Deep Learning," Energies, MDPI, vol. 17(7), pages 1-24, April.
    2. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    3. Gonzalez-Carreon, Karla M. & García Kerdan, Iván, 2025. "Optimising large-scale solar-based distributed energy generation systems in high-density urban areas: An integrated approach using geospatial and techno-economic modelling," Energy, Elsevier, vol. 327(C).
    4. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    5. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    6. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.
    7. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    8. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
    9. Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
    10. Aitor Barrio & Fernando Burgoa Francisco & Andrea Leoncini & Lars Wietschel & Andrea Thorenz, 2021. "Life Cycle Sustainability Assessment of a Novel Bio-Based Multilayer Panel for Construction Applications," Resources, MDPI, vol. 10(10), pages 1-21, September.
    11. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    12. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.
    13. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    14. Chang, Ming-Chung, 2016. "Applying the energy productivity index that considers maximized energy reduction on SADC (Southern Africa Development Community) members," Energy, Elsevier, vol. 95(C), pages 313-323.
    15. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    16. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    17. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    18. Lingyan He & Miao Wang, 2023. "Environmental regulation and green innovation of polluting firms in China," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-20, March.
    19. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    20. Nagy, Karoly & Körmendi, Krisztina, 2012. "Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”," Applied Energy, Elsevier, vol. 96(C), pages 393-399.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5843-:d:1526594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.