IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5712-d1521549.html
   My bibliography  Save this article

In Situ Raman Study of Layered Double Hydroxide Catalysts for Water Oxidation to Hydrogen Evolution: Recent Progress and Future Perspectives

Author

Listed:
  • Jiafeng Wen

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Siyuan Tang

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xiang Ding

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yin Yin

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Fuzhan Song

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xinchun Yang

    (Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Energy Engineering, Shenzhen 518055, China)

Abstract

With the increasing global emphasis on green energy and sustainable development goals, the electrocatalytic oxygen evolution reaction (OER) is gradually becoming a crucial focus in research on water oxidation for hydrogen generation. However, its complicated reaction processes associated with its high energy barrier severely limit the efficiency of energy conversion. Recently, layered double hydroxide (LDH) has been considered as one of the most promising catalysts in alkaline media. Nonetheless, lacking a deep insight into the kinetic process of the electrocatalytic OER process is detrimental to the further optimization of LDH catalysts. Therefore, monitoring the catalytic reaction kinetic process via surface-sensitive in situ spectroscopy is especially important. In particular, the in situ Raman technique is capable of providing fingerprint information for surface species and intermediates in the operating environment. From the perspective of Raman spectroscopy, this paper provides an exhaustive overview of research progress in in situ Raman for the characterization of the catalytic mechanism of LDH catalysts, providing theoretical guidance for designing LDH materials. Finally, we present an incisive discussion on the challenges of the electrocatalytic in situ Raman technique and its future development trend.

Suggested Citation

  • Jiafeng Wen & Siyuan Tang & Xiang Ding & Yin Yin & Fuzhan Song & Xinchun Yang, 2024. "In Situ Raman Study of Layered Double Hydroxide Catalysts for Water Oxidation to Hydrogen Evolution: Recent Progress and Future Perspectives," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5712-:d:1521549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    4. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    5. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Tingke Fang & Coleman Vairin & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Review of Fuel-Cell Electric Vehicles," Energies, MDPI, vol. 17(9), pages 1-25, April.
    7. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
    8. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    9. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    10. Bocheng Lv & Yu Liu & Weidong Wu & Yan Xie & Jia-Lin Zhu & Yang Cao & Wanyun Ma & Ning Yang & Weidong Chu & Yi Jia & Jinquan Wei & Jia-Lin Sun, 2022. "Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    12. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Huang, Zhe & Lu, Lu & Jiang, Daqian & Xing, Defeng & Ren, Zhiyong Jason, 2017. "Electrochemical hythane production for renewable energy storage and biogas upgrading," Applied Energy, Elsevier, vol. 187(C), pages 595-600.
    14. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Huang, Junbing & Wang, Yajun & Guo, Lili, 2022. "Energy intensity and energy-specific technological progress: A case study in Guangdong province of China," Renewable Energy, Elsevier, vol. 184(C), pages 990-1001.
    16. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    17. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Solomon E. Uhunamure & Nthaduleni S. Nethengwe & David Tinarwo, 2021. "Development of a Comprehensive Conceptual Framework for Biogas Technology Adoption in South Africa," Resources, MDPI, vol. 10(8), pages 1-21, July.
    19. Young-Jin Ko & Chulwan Lim & Junyoung Jin & Min Gyu Kim & Ji Yeong Lee & Tae-Yeon Seong & Kwan-Young Lee & Byoung Koun Min & Jae-Young Choi & Taegeun Noh & Gyu Weon Hwang & Woong Hee Lee & Hyung-Suk O, 2024. "Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO2 electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5712-:d:1521549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.