IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5623-d1517938.html
   My bibliography  Save this article

Numerical Simulation Study of Thermal Performance in Hot Water Storage Tanks with External and Internal Heat Exchangers

Author

Listed:
  • Yelizaveta Karlina

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Yelnar Yerdesh

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Amankeldy Toleukhanov

    (Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Yerzhan Belyayev

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Hua Sheng Wang

    (School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK)

  • Olivier Botella

    (Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France)

Abstract

This paper presents a numerical analysis of two hot water storage tank configurations—one equipped with an external heat exchanger (Tank-1) and the other with an internal heat exchanger (Tank-2). The objective is to evaluate and compare their thermal performance during charging and discharging processes. The numerical model is developed by solving a system of ordinary differential equations using the 4th-order Runge–Kutta method, implemented in the Python programming language. The results indicate that Tank-1 demonstrated a higher charging efficiency of 94.6%, achieving full charge in approximately 2 h and 20 min. In comparison, Tank-2 required 3 h and 47 min to reach full charge, with a charging efficiency of 85.9%. During discharge, both configurations exhibited similar behavior, with an efficiency of 13.63% over approximately 33 min. The analysis showed that the external heat exchanger configuration led to more effective thermal stratification, supported by the Richardson number analysis, which indicated a significant effect of buoyancy during charging. This design advantage makes Tank-1 particularly suitable for applications requiring rapid heating and minimal heat loss, such as in cold climates or intermittent demand systems. The numerical model demonstrated reliable predictive accuracy, achieving an RMSE of 6.1% for the charging process and 6.8% for the discharging process, thereby validating the model’s reliability. These findings highlight the superior performance of the external heat exchanger configuration for fast and efficient energy storage, particularly for applications in cold climates.

Suggested Citation

  • Yelizaveta Karlina & Yelnar Yerdesh & Amankeldy Toleukhanov & Yerzhan Belyayev & Hua Sheng Wang & Olivier Botella, 2024. "Numerical Simulation Study of Thermal Performance in Hot Water Storage Tanks with External and Internal Heat Exchangers," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5623-:d:1517938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
    2. Raccanello, J. & Rech, S. & Lazzaretto, A., 2019. "Simplified dynamic modeling of single-tank thermal energy storage systems," Energy, Elsevier, vol. 182(C), pages 1154-1172.
    3. De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunshen Zhang & Yun Guo & Jiaao Zhu & Weijian Yuan & Feng Zhao, 2024. "New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review," Energies, MDPI, vol. 17(10), pages 1-41, May.
    2. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    3. Liu, Sijia & Winter, Michaela & Lewerenz, Meinert & Becker, Jan & Sauer, Dirk Uwe & Ma, Zeyu & Jiang, Jiuchun, 2019. "Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature," Energy, Elsevier, vol. 173(C), pages 1041-1053.
    4. Marika Pilou & George Kosmadakis & George Meramveliotakis, 2023. "Modeling of an Integrated Renewable-Energy-Based System for Heating, Cooling, and Electricity for Buildings," Energies, MDPI, vol. 16(12), pages 1-29, June.
    5. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    6. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    7. Joseph Rendall & Fernando Karg Bulnes & Kyle Gluesenkamp & Ahmad Abu-Heiba & William Worek & Kashif Nawaz, 2021. "A Flow Rate Dependent 1D Model for Thermally Stratified Hot-Water Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    8. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    9. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    10. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    11. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    12. Rosiek, Sabina & Romero-Cano, Manuel S. & Puertas, Antonio M. & Batlles, Francisco J., 2019. "Industrial food chamber cooling and power system integrated with renewable energy as an example of power grid sustainability improvement," Renewable Energy, Elsevier, vol. 138(C), pages 697-708.
    13. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    14. Parida, Dipti Ranjan & Advaith, S. & Dani, Nikhil & Basu, Saptarshi, 2022. "Assessing the impact of a novel hemispherical diffuser on a single-tank sensible thermal energy storage system," Renewable Energy, Elsevier, vol. 183(C), pages 202-218.
    15. Linghu, Jinqing & Kang, Longyun & Liu, Ming & Luo, Xuan & Feng, Yuanbin & Lu, Chusheng, 2019. "Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter," Energy, Elsevier, vol. 189(C).
    16. Zinsmeister, Daniel & Tzscheutschler, Peter & Perić, Vedran S. & Goebel, Christoph, 2023. "Stratified thermal energy storage model with constant layer volume for predictive control — Formulation, comparison, and empirical validation," Renewable Energy, Elsevier, vol. 219(P2).
    17. de Wildt, Tristan E. & Chappin, Emile J.L. & van de Kaa, Geerten & Herder, Paulien M., 2018. "A comprehensive approach to reviewing latent topics addressed by literature across multiple disciplines," Applied Energy, Elsevier, vol. 228(C), pages 2111-2128.
    18. Sun, Kun & Liu, Huan & Wang, Xiaodong & Wu, Dezhen, 2019. "Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell," Applied Energy, Elsevier, vol. 237(C), pages 549-565.
    19. Karlilar Pata, Selin & Pata, Ugur Korkut & Wang, Qiang, 2025. "Ecological power of energy storage, clean fuel innovation, and energy-related research and development technologies," Renewable Energy, Elsevier, vol. 241(C).
    20. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Allocation of economic costs in trigeneration systems at variable load conditions including renewable energy sources and thermal energy storage," Energy, Elsevier, vol. 151(C), pages 633-646.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5623-:d:1517938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.