IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4831-d1486651.html
   My bibliography  Save this article

Suppression and Analysis of Low-Frequency Oscillation in Hydropower Unit Regulation Systems with Complex Water Diversion Systems

Author

Listed:
  • Zhao Liu

    (Xiangjiaba Hydropower Plant, China Yangtze Power Co., Ltd., Yibin 644612, China)

  • Zhenwu Yan

    (Xiangjiaba Hydropower Plant, China Yangtze Power Co., Ltd., Yibin 644612, China)

  • Hongwei Zhang

    (Xiangjiaba Hydropower Plant, China Yangtze Power Co., Ltd., Yibin 644612, China)

  • Huiping Xie

    (Xiangjiaba Hydropower Plant, China Yangtze Power Co., Ltd., Yibin 644612, China)

  • Yidong Zou

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Yang Zheng

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Zhihuai Xiao

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Fei Chen

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

Abstract

Low-frequency oscillation (LFO) poses significant challenges to the dynamic performance of hydropower unit regulation systems (HURS) in hydropower units sharing a tailwater system. Previous methods have struggled to effectively suppress LFO, due to limitations in governor parameter optimization strategies. To address this issue, this paper proposes a governor parameter optimization strategy based on the crayfish optimization algorithm (COA). Considering the actual water diversion layout (WDL) of a HURS, a comprehensive mathematical model of the WDL is constructed and, combined with models of the governor, turbine, and generator, an overall HURS model for the shared tailwater system is derived. By utilizing the efficient optimization performance of the COA, the optimal PID parameters for the HURS controller are quickly obtained, providing robust support for PID parameter tuning. Simulation results showed that the proposed strategy effectively suppressed LFOs and significantly enhanced the dynamic performance of the HURS under grid-connected conditions. Specifically, compared to before optimization, the optimized system reduced the oscillation amplitude by at least 30% and improved the stabilization time by at least 25%. Additionally, the impact of the power grid system parameters on oscillations was studied, providing guidance for the optimization and tuning of specific system parameters.

Suggested Citation

  • Zhao Liu & Zhenwu Yan & Hongwei Zhang & Huiping Xie & Yidong Zou & Yang Zheng & Zhihuai Xiao & Fei Chen, 2024. "Suppression and Analysis of Low-Frequency Oscillation in Hydropower Unit Regulation Systems with Complex Water Diversion Systems," Energies, MDPI, vol. 17(19), pages 1-29, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4831-:d:1486651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi Yang & Jing Qian & Jia Li & Yidong Zou & Danning Tian & Yun Zeng & Yan Long & Ganyuan Zhang, 2023. "A New Integral Sliding Mode Control for Hydraulic Turbine Governing Systems Based on Nonlinear Disturbance Observer Compensation," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    2. Bo Yang & Yulin Li & Wei Yao & Lin Jiang & Chuanke Zhang & Chao Duan & Yaxing Ren, 2023. "Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives," Energies, MDPI, vol. 16(9), pages 1-4, May.
    3. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    4. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    5. Chen, Jinbao & Zeng, Quan & Zou, Yidong & Li, Shaojie & Zheng, Yang & Liu, Dong & Xiao, Zhihuai, 2024. "Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization," Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    2. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    3. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    4. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang, 2022. "Influence of water diversion system topologies and operation scenarios on the damping characteristics of hydropower units under ultra-low frequency oscillations," Energy, Elsevier, vol. 239(PE).
    5. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    6. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    7. Liu, Zhe & Yu, Xiaodong & Pérez-Díaz, Juan I. & Liu, Yi & Martínez-Lucas, Guillermo, 2023. "Influence of water hammer effect on low frequency oscillation of grid-connected hydropower station system," Renewable Energy, Elsevier, vol. 219(P2).
    8. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    9. Liubomyr Vytvytskyi & Bernt Lie, 2019. "OpenHPL for Modelling the Trollheim Hydropower Plant," Energies, MDPI, vol. 12(12), pages 1-19, June.
    10. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    11. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    12. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    13. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    14. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    15. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    16. Ping, Zuowei & Li, Xiuting & He, Wei & Yang, Tao & Yuan, Ye, 2020. "Sparse learning of network-reduced models for locating low frequency oscillations in power systems," Applied Energy, Elsevier, vol. 262(C).
    17. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    18. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    20. Chen Feng & Guilin Li & Yuan Zheng & Daqing Zhou & Zijun Mai, 2022. "Multi-Objective Optimization of Back-to-Back Starting for Pumped Storage Plants under Low Water Head Conditions Based on the Refined Model," Sustainability, MDPI, vol. 14(16), pages 1-30, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4831-:d:1486651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.