IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4189-d1461590.html
   My bibliography  Save this article

Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems

Author

Listed:
  • Michal Borecki

    (Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Mateusz Geca

    (Doctoral School, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Li Zan

    (Doctoral School, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Przemysław Prus

    (Independent Researcher, 52-016 Wrocław, Poland)

  • Michael L. Korwin-Pawlowski

    (Département d’Informatique et d’Ingénierie, Université du Québec en Outaouais, Gatineau, QC J8X 3X7, Canada)

Abstract

Fuels should behave appropriately in all sections of the engine system: the engine, fuel delivery system, and tank. Fuel quality can be linked to the following three crucial areas: performance, fitness for current use, and stability. Classical methods of diesel fuel examination mostly rely on the absolute value measurement of one specific parameter while stabilizing outside conditions. In contrast, multiparametric methods depend on simultaneously measuring a set of parameters. Therefore, multiparametric methods open the possibility of intriguing new examinations and classifications of diesel fuel quality while raising specific issues relating to the instrumentation and construction of sensing devices. This paper presents a review, based on the published literature and the authors’ research, of the current state-of-the-art multiparametric methods for rapid diesel fuel quality classification and related instrumentation, systematizing the various types of methods from the point of view of the principles of their operation. The main conclusion is that different measuring procedures use similar methods of data processing. Moreover, the heavy, costly, and complex devices that enable standard examinations can be converted to simpler devices in the future, whose cost of use is significantly lower. However, to achieve this, progress in electronic devices is required.

Suggested Citation

  • Michal Borecki & Mateusz Geca & Li Zan & Przemysław Prus & Michael L. Korwin-Pawlowski, 2024. "Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems," Energies, MDPI, vol. 17(16), pages 1-42, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4189-:d:1461590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hazar, Hanbey, 2009. "Effects of biodiesel on a low heat loss diesel engine," Renewable Energy, Elsevier, vol. 34(6), pages 1533-1537.
    2. Shehata, M.S., 2010. "Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine," Energy, Elsevier, vol. 35(12), pages 4710-4725.
    3. Stefano d’Ambrosio & Alessandro Mancarella & Andrea Manelli, 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
    5. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    6. Giakoumis, Evangelos G., 2013. "A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 50(C), pages 858-878.
    7. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    8. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    9. Lee, Cho-Yu & Lin, Jhe-Kai & Wang, Wei-Cheng & Chen, Rong-Hong & Lin, Kun-Mo & Saputro, Herman & Cong, Huynh Thanh & Hong, Thong Duc & Tongroon, Manida, 2023. "The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine," Energy, Elsevier, vol. 270(C).
    10. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    11. Kim, Keunsoo & Lee, Wooyoung & Wiersema, Paxton & Mayhew, Eric & Temme, Jacob & Kweon, Chol-Bum M. & Lee, Tonghun, 2023. "Effects of the cetane number on chemical ignition delay," Energy, Elsevier, vol. 264(C).
    12. S M Mozammil Hasnain & Rajeshwari Chatterjee & Prabhat Ranjan & Gaurav Kumar & Shubham Sharma & Abhinav Kumar & Bashir Salah & Syed Sajid Ullah, 2023. "Performance, Emission, and Spectroscopic Analysis of Diesel Engine Fuelled with Ternary Biofuel Blends," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayyed, Siraj & Das, Randip Kumar & Kulkarni, Kishor, 2022. "Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodiesel-diesel blends of Jatropha, Karanja, Mahua, and Neem," Energy, Elsevier, vol. 238(PB).
    2. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    3. Ade Suhara & Karyadi & Safarudin Gazali Herawan & Andy Tirta & Muhammad Idris & Muhammad Faizullizam Roslan & Nicky Rahmana Putra & April Lia Hananto & Ibham Veza, 2024. "Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel," Clean Technol., MDPI, vol. 6(3), pages 1-21, July.
    4. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    5. Antonio Lecuona & José I. Nogueira & Antonio Famiglietti, 2021. "Open Dual Cycle with Composition Change and Limited Pressure for Prediction of Miller Engines Performance and Its Turbine Temperature," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    7. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    9. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    10. Li, Hao & Song, Chonglin & Lv, Gang & Pang, Huating & Qiao, Yuehan, 2017. "Assessment of the impact of post-injection on exhaust pollutants emitted from a diesel engine fueled with biodiesel," Renewable Energy, Elsevier, vol. 114(PB), pages 924-933.
    11. Kwonwoo Jang & Jeonghyeon Yang & Beomsoo Kim & Jaesung Kwon, 2024. "Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions," Energies, MDPI, vol. 17(24), pages 1-17, December.
    12. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    13. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    14. Balla M. Ahmed & Maji Luo & Hassan A. M. Elbadawi & Nasreldin M. Mahmoud & Pang-Chieh Sui, 2024. "Experimental Study of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions of Diesel Engine Fueled with Diesel–2-Methylfuran Blends," Energies, MDPI, vol. 18(1), pages 1-16, December.
    15. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    16. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    17. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    18. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    19. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4189-:d:1461590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.