IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2402-d1396039.html
   My bibliography  Save this article

Analysis of the Flow Behavior and Pressure Fluctuation of a Pump Turbine with Splitter Blades in Part-Load Pump Mode

Author

Listed:
  • Wei Xiao

    (Pumped-Storage Technological & Economic Research Institute State Grid Xinyuan Company Ltd., Beijing 100053, China)

  • Shaocheng Ren

    (China Institute of Water Resources and Hydropower Research, Beijing 100048, China)

  • Liu Chen

    (China Institute of Water Resources and Hydropower Research, Beijing 100048, China)

  • Bin Yan

    (Pumped-Storage Technological & Economic Research Institute State Grid Xinyuan Company Ltd., Beijing 100053, China)

  • Yilin Zhu

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Yexiang Xiao

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

The internal flow of a pump turbine is unstable in part-load pump mode for small guide-vane openings, and the strong vibration caused by pressure pulsation is related to the safe and stable operation of the unit. A pump turbine with a six-splitter-blade runner was chosen for unsteady simulation analyses. A standard k-epsilon turbulence model was adopted to study the unsteady flow and pressure pulsation in part-load pump mode. The predicted results show that the flow in the draft tube and the runner with splitter blades was relatively stable and the flow of the blade-to-blade channel was symmetrical. When the inlet and outlet velocity distribution of the vanes was not uniform, a vortex began to form in the stay-vane domain. The reason for this vortex formation is explained, and it is pointed out that the existence of the vortex and backflow leads to uneven velocity distribution. The unsteady calculation results showed that the pressure-pulsation peak-to-peak amplitudes in the vaneless area and guide vanes were much higher than those of other monitor points because of rotor–stator interference between the rotating runner and the vanes. In addition, the pulsation characteristics of the monitor points at different circumferential positions in the vaneless region were quite different. In the vaneless area, the velocity gradient along the circumferential direction was very large, and there was a phenomenon of backflow. Also, the pressure pulsation was 0.2 times that of the runner rotational frequency, and the blade-passing frequency was a third-order frequency. At the outlet of the guide vane, the pressure pulsation was mainly of a low frequency with a complex vortex flow. Finally, the pressure pulsation began to decrease rapidly in the stay-vane region.

Suggested Citation

  • Wei Xiao & Shaocheng Ren & Liu Chen & Bin Yan & Yilin Zhu & Yexiang Xiao, 2024. "Analysis of the Flow Behavior and Pressure Fluctuation of a Pump Turbine with Splitter Blades in Part-Load Pump Mode," Energies, MDPI, vol. 17(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2402-:d:1396039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jianling & Zhao, Ziwen & Xu, Dan & Li, Peiquan & Liu, Yong & Mahmud, Md Apel & Chen, Diyi, 2023. "The potential assessment of pump hydro energy storage to reduce renewable curtailment and CO2 emissions in Northwest China," Renewable Energy, Elsevier, vol. 212(C), pages 82-96.
    2. Ruppert, Leopold & Schürhuber, Robert & List, Bernhard & Lechner, Alois & Bauer, Christian, 2017. "An analysis of different pumped storage schemes from a technological and economic perspective," Energy, Elsevier, vol. 141(C), pages 368-379.
    3. Wang, Xianxun & Virguez, Edgar & Xiao, Weihua & Mei, Yadong & Patiño-Echeverri, Dalia & Wang, Hao, 2019. "Clustering and dispatching hydro, wind, and photovoltaic power resources with multiobjective optimization of power generation fluctuations: A case study in southwestern China," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Xiao & Liu Chen & Shaocheng Ren & Bin Yan & Zishi Liu & Yexiang Xiao, 2024. "Analysis of Pressure Fluctuation of a Pump-Turbine with Splitter Blades on Small Opening in Turbine Mode," Energies, MDPI, vol. 17(12), pages 1-16, June.
    2. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    3. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    4. Hui Wang & Xiaowen Chen & Qianpeng Yang & Bowen Li & Zongyu Yue & Jeffrey Dankwa Ampah & Haifeng Liu & Mingfa Yao, 2024. "Optimization of Renewable Energy Hydrogen Production Systems Using Volatility Improved Multi-Objective Particle Swarm Algorithm," Energies, MDPI, vol. 17(10), pages 1-15, May.
    5. Li, Xiao & Liu, Pan & Cheng, Lei & Cheng, Qian & Zhang, Wei & Xu, Shitian & Zheng, Yalian, 2023. "Strategic bidding for a hydro-wind-photovoltaic hybrid system considering the profit beyond forecast time," Renewable Energy, Elsevier, vol. 204(C), pages 277-289.
    6. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    7. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).
    8. Zhou, Yanlai & Ning, Zhihao & Huang, Kangkang & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2025. "Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    9. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    10. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    11. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    12. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    13. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    14. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    15. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).
    16. Shengli Liao & Yan Zhang & Jie Liu & Benxi Liu & Zhanwei Liu, 2021. "Short-Term Peak-Shaving Operation of Single-Reservoir and Multicascade Hydropower Plants Serving Multiple Power Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 689-705, January.
    17. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    18. Mingyi Liu & Bin Zhang & Jiaqi Wang & Han Liu & Jianxing Wang & Chenghao Liu & Jiahui Zhao & Yue Sun & Rongrong Zhai & Yong Zhu, 2023. "Optimal Configuration of Wind-PV and Energy Storage in Large Clean Energy Bases," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    19. Davi-Arderius, Daniel & Jamasb, Tooraj & Rosellon, Juan, 2025. "Network Operation Constraints on the Path to Net Zero," Applied Energy, Elsevier, vol. 382(C).
    20. Wang, Ran & Yang, Weijia & Huang, Yifan & Li, Xudong & Liu, Yuanhong & Chen, Jingdan & Cheng, Qian & Mei, Yadong & Cheng, Yongguang & Liu, Pan, 2024. "Coordinating regulation reliability and quality of pumped storage units for renewables by a novel scheduling-control synergic model," Applied Energy, Elsevier, vol. 376(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2402-:d:1396039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.