IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2337-d1393252.html
   My bibliography  Save this article

Simulation Study on Combustion Performance of Ammonia-Hydrogen Fuel Engines

Author

Listed:
  • Duanzheng Zhao

    (State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China)

  • Wenzhi Gao

    (State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China)

  • Yuhuai Li

    (GAC Research and Development Center, 668 Jinshan Road East, Guangzhou 511434, China)

  • Zhen Fu

    (State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China)

  • Xinyu Hua

    (State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China)

  • Yuxuan Zhang

    (State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China)

Abstract

Ammonia is a very promising alternative fuel for internal combustion engines, but there are some disadvantages, such as difficulty in ignition and slow combustion rate when ammonia is used alone. Aiming to address the problem of ammonia combustion difficulty, measures are proposed to improve ammonia combustion by blending hydrogen. A one-dimensional turbocharged ammonia-hydrogen engine simulation model was established, and the combustion model was corrected and verified. Using the verified one-dimensional model, the effects of different ratios of hydrogen to ammonia, different rotational speeds and loads on the combustion performance are investigated. The results show that the ignition delay and combustion duration is shortened with the increase of the hydrogen blending ratio. The appropriate amount of hydrogen blending can improve the brake’s thermal efficiency. With the increase in engine speed, increasing the proportion of hydrogen blending is necessary to ensure reliable ignition. In conclusion, the ammonia-hydrogen fuel engine has good combustion performance, but it is necessary to choose the appropriate hydrogen blending ratio according to the engine’s operating conditions and requirements.

Suggested Citation

  • Duanzheng Zhao & Wenzhi Gao & Yuhuai Li & Zhen Fu & Xinyu Hua & Yuxuan Zhang, 2024. "Simulation Study on Combustion Performance of Ammonia-Hydrogen Fuel Engines," Energies, MDPI, vol. 17(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2337-:d:1393252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    2. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengwei Sun & Zhongqian Ling & Jiani Mao & Xianyang Zeng & Dingkun Yuan & Maosheng Liu, 2025. "Ammonia-Based Clean Energy Systems: A Review of Recent Progress and Key Challenges," Energies, MDPI, vol. 18(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Enrico Dal Cin & Gabriele Volpato, 2023. "Is Banning Fossil-Fueled Internal Combustion Engines the First Step in a Realistic Transition to a 100% RES Share?," Energies, MDPI, vol. 16(15), pages 1-18, July.
    2. de Souza, T.A.Z. & Pinto, G.M. & Julio, A.A.V. & Coronado, C.J.R. & Perez-Herrera, R. & Siqueira, B.O.P.S. & da Costa, R.B.R. & Roberts, J.J. & Palacio, J.C.E., 2022. "Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    4. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    6. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    7. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    8. Ooi, Jong Boon & Kau, Chia Chuin & Manoharan, Dilrukshan Naveen & Wang, Xin & Tran, Manh-Vu & Hung, Yew Mun, 2023. "Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend," Energy, Elsevier, vol. 281(C).
    9. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    10. Sarıdemir, Suat & Polat, Fikret & Simsir, Hamza & Uysal, Cuneyt & Ağbulut, Ümit, 2025. "Novel green hydrochar production for renewable fuel substitutes, and experimental investigation of its usability on CI engine performance, combustion, and emission characteristics," Energy, Elsevier, vol. 318(C).
    11. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    12. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    13. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Liu, Hongxiang & Han, Ling & Cao, Yue, 2020. "Improving transmission efficiency and reducing energy consumption with automotive continuously variable transmission: A model prediction comprehensive optimization approach," Applied Energy, Elsevier, vol. 274(C).
    15. Gowthamraj Rajendran & Reiko Raute & Cedric Caruana, 2025. "A Comprehensive Review of Solar PV Integration with Smart-Grids: Challenges, Standards, and Grid Codes," Energies, MDPI, vol. 18(9), pages 1-80, April.
    16. Loris Ventura & Roberto Finesso & Stefano A. Malan, 2023. "Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop," Energies, MDPI, vol. 16(2), pages 1-23, January.
    17. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    18. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    19. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    20. Xiangyang, Wang & Yu, Liu & Xiaoping, Li & Fangxi, Xie & Beiping, Jiang, 2024. "Experimental study on improvement of air-dilution combustion performance of methanol engine by adjusting intake guide flappers, exhaust variable valve timing and split injection," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2337-:d:1393252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.