IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2251-d1389969.html
   My bibliography  Save this article

Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis

Author

Listed:
  • Rachida Hachache

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco
    LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Mourad Labrahmi

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • António Grilo

    (INESC-ID Lisboa, IST-Universidade de Lisboa, 1000-100 Lisboa, Portugal)

  • Abdelaali Chaoub

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • Rachid Bennani

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco)

  • Ahmed Tamtaoui

    (STRS Laboratory, Institut National des Postes et Telecommunications (INPT), Rabat 10112, Morocco)

  • Brahim Lakssir

    (Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Ben Guerir 43150, Morocco)

Abstract

Energy management systems allow the Smart Grids industry to track, improve, and regulate energy use. Particularly, demand-side management is regarded as a crucial component of the entire Smart Grids system. Therefore, by aligning utility offers with customer demand, anticipating future energy demands is essential for regulating consumption. An updated examination of several forecasting techniques for projecting energy short-term load forecasts is provided in this article. Each class of algorithms, including statistical techniques, Machine Learning, Deep Learning, and hybrid combinations, are comparatively evaluated and critically analyzed, based on three real consumption datasets from Spain, Germany, and the United States of America. To increase the size of tiny training datasets, this paper also proposes a data augmentation technique based on Generative Adversarial Networks. The results show that the Deep Learning-hybrid model is more accurate than traditional statistical methods and basic Machine Learning procedures. In the same direction, it is demonstrated that more comprehensive datasets assisted by complementary data, such as energy generation and weather, may significantly boost the accuracy of the models. Additionally, it is also demonstrated that Generative Adversarial Networks-based data augmentation may greatly improve algorithm accuracy.

Suggested Citation

  • Rachida Hachache & Mourad Labrahmi & António Grilo & Abdelaali Chaoub & Rachid Bennani & Ahmed Tamtaoui & Brahim Lakssir, 2024. "Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis," Energies, MDPI, vol. 17(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2251-:d:1389969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    2. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oğuzhan Timur & Halil Yaşar Üstünel, 2025. "Short-Term Electric Load Forecasting for an Industrial Plant Using Machine Learning-Based Algorithms," Energies, MDPI, vol. 18(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    4. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-15, May.
    5. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    6. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    7. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    8. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    9. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    10. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    11. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Omar Jouma El-Hafez & Tarek Y. ElMekkawy & Mohamed Kharbeche & Ahmed Massoud, 2022. "Impact of COVID-19 Pandemic on Qatar Electricity Demand and Load Forecasting: Preparedness of Distribution Networks for Emerging Situations," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    13. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    14. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    15. Wei Wang & Bin Ma & Xing Guo & Yong Chen & Yonghong Xu, 2024. "A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction," Energies, MDPI, vol. 17(15), pages 1-18, July.
    16. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    17. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    18. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    19. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
    20. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2251-:d:1389969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.