IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p58-d1304997.html
   My bibliography  Save this article

Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries

Author

Listed:
  • Dae-Seon Hong

    (Department of Energy Storage Researh, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea
    Department of Organic Materials Engineering, Chungnam National University, Daejeon 35015, Republic of Korea)

  • Yeon-Ji Choi

    (Department of Energy Storage Researh, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea
    Department of Energy Engineering, HanYang University, Seoul 04763, Republic of Korea)

  • Chang-Su Jin

    (Department of Energy Storage Researh, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea)

  • Kyoung-Hee Shin

    (Department of Energy Storage Researh, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea)

  • Woo-Jin Song

    (Department of Organic Materials Engineering, Chungnam National University, Daejeon 35015, Republic of Korea)

  • Sun-Hwa Yeon

    (Department of Energy Storage Researh, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea)

Abstract

The lithium-air battery is a new type of secondary battery technology that is currently receiving a lot of attention in the field of power storage technology. These batteries are known to offer high energy densities and potentially longer driving ranges. In this study, NiCo 2 O 4 and CNTs were used to create a composite for use as the cathode of a Li-air battery. Improving the 3D needl-like structure that provides extensive transport channels for electrolyte infiltration and numerous sites facilitated charge transfer reactions and the synergistic effect of highly electrocatalytic NiCo 2 O 4 with pronounced activity and high conductive CNTs, with the synthesized NiCo 2 O 4 @CNTs composites exhibiting active catalytic performance for both OER and ORR reactions. It also showed improved cycle performance at high current densities. NiCo 2 O 4 @CNTs composites were successfully fabricated using a hydrothermal method together with a sequential annealing treatment. The components of the completed composite were confirmed using TGA, XRD, and SEM, and the specific surface area was analyzed using BET. The composite was performed for over 120 cycles at a current density of 200 mA∙g −1 , and 500 mA∙g −1 was achieved under the capacity limiting condition of 500 mAh∙g −1 . The charging/discharging characteristics were compared under various current densities, exhibiting stable cyclability. The high catalytic activity of NiCo 2 O 4 oxide supports its potential use as a cathode in Li-air batteries.

Suggested Citation

  • Dae-Seon Hong & Yeon-Ji Choi & Chang-Su Jin & Kyoung-Hee Shin & Woo-Jin Song & Sun-Hwa Yeon, 2023. "Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries," Energies, MDPI, vol. 17(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:58-:d:1304997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    2. Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    2. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    3. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    6. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
    7. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    8. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2022. "Modeling the multi-step discharge and charge reaction mechanisms of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 317(C).
    9. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    10. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    11. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    12. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.
    15. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Christian Thies & Karsten Kieckhäfer & Thomas S. Spengler, 2021. "Activity analysis based modeling of global supply chains for sustainability assessment," Journal of Business Economics, Springer, vol. 91(2), pages 215-252, March.
    17. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    18. Tan, Peng & Xiao, Xu & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Jaeho Choi & Woo Jin Byun & DongHwan Kang & Jung Kyoo Lee, 2021. "Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-11, February.
    20. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:58-:d:1304997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.