IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p222-d1311189.html
   My bibliography  Save this article

Review on Non-Isolated Multiport Converters for Residential DC Microgrids

Author

Listed:
  • Georgios Salagiannis

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Rion-Patras, Greece)

  • Emmanuel Tatakis

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Rion-Patras, Greece)

Abstract

Nowadays, energy sustainability needs drive the development of novel power system architectures that efficiently harvest and deliver green energy. Specifically, DC Microgrids (DC-MG) have emerged as promising bases for distributed power generation, especially in residential applications. The pivotal role of power conversion and the need for more affordable and compact converters has led to an increasing research interest. MultiPort Converters (MPCs) exhibit beneficial operational characteristics for these applications and, therefore, a plethora of different topologies is suggested in the literature. Even though there have been some attempts to organize and review the field status, the categorization is based on the existence or not of isolation between the converter’s ports, without providing insight on the topology conception. In this article, a literature review is conducted to specify the most suitable non-isolated MPC topologies for residential DC-MGs. Converters with a power rating ranging from 0.1 to 1 kW are compared based on technical features and categorized according to their topology derivation process. This procedure is performed separately for MPCs suitable for unipolar and bipolar DC Buses. The selected approach highlights the design basis for each MPC in a structured manner, facilitating further development of original converters by both new and experienced researchers.

Suggested Citation

  • Georgios Salagiannis & Emmanuel Tatakis, 2023. "Review on Non-Isolated Multiport Converters for Residential DC Microgrids," Energies, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:222-:d:1311189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jayakumar Narayanaswamy & Srihari Mandava, 2023. "Non-Isolated Multiport Converter for Renewable Energy Sources: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-25, February.
    2. J. M. Amanor-Boadu & A. Guiseppi-Elie & E. Sánchez-Sinencio, 2018. "The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    2. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.
    3. Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
    4. Omer Faruk Goksu & Ahmet Yigit Arabul & Revna Acar Vural, 2020. "Low Voltage Battery Management System with Internal Adaptive Charger and Fuzzy Logic Controller," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. Román-Ramírez, L.A. & Marco, J., 2022. "Design of experiments applied to lithium-ion batteries: A literature review," Applied Energy, Elsevier, vol. 320(C).
    6. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    7. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    8. Nagwa F. Ibrahim & Sid Ahmed El Mehdi Ardjoun & Mohammed Alharbi & Abdulaziz Alkuhayli & Mohamed Abuagreb & Usama Khaled & Mohamed Metwally Mahmoud, 2023. "Multiport Converter Utility Interface with a High-Frequency Link for Interfacing Clean Energy Sources (PV\Wind\Fuel Cell) and Battery to the Power System: Application of the HHA Algorithm," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    9. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    10. Peyman Koohi & Alan J. Watson & Jon C. Clare & Thiago Batista Soeiro & Patrick W. Wheeler, 2023. "A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges," Energies, MDPI, vol. 16(16), pages 1-47, August.
    11. Mahdi Bayati & Mehrdad Abedi & Maryam Farahmandrad & Gevork B. Gharehpetian & Kambiz Tehrani, 2021. "Important Technical Considerations in Design of Battery Chargers of Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:222-:d:1311189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.