IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3953-d1141806.html
   My bibliography  Save this article

Power Distribution System Outage Management Using Improved Resilience Metrics for Smart Grid Applications

Author

Listed:
  • Arif Fikri Malek

    (Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Hazlie Mokhlis

    (Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Nurulafiqah Nadzirah Mansor

    (Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Jasrul Jamani Jamian

    (Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

  • Li Wang

    (Department of Electrical Engineering, College of Electrical Engineering & Computer Science, National Cheng Kung University, Tainan City 70101, Taiwan)

  • Munir Azam Muhammad

    (Department of Electrical Engineering, Iqra University, Karachi 75500, Pakistan)

Abstract

Smart grid systems play a significant role in improving the resilience of distribution systems (DSs). In this paper, two strategies are proposed for implementation of a smart grid application: (a) a network reconfiguration and (b) a network reconfiguration with mobile emergency generator (MEGs) deployment. An improved set of resilience metrics to quantify and enhance the resiliency of distribution systems (DSs) is developed for the proposed optimization. The metrics aim to determine a suitable strategy and the optimal number and capacity of MEGs to restore the disconnected loads through the development of several microgrids. These metrics are then aggregated with the proposed strategy to develop an automated solution provider. The objective is to maximize system resilience considering the priority loads. The proposed resilience metrics are tested on the IEEE 33-Bus radial DSs. The case studies conducted proved the performance of the proposed power outage management strategy and resilience metrics in maximizing system resiliency for smart grids.

Suggested Citation

  • Arif Fikri Malek & Hazlie Mokhlis & Nurulafiqah Nadzirah Mansor & Jasrul Jamani Jamian & Li Wang & Munir Azam Muhammad, 2023. "Power Distribution System Outage Management Using Improved Resilience Metrics for Smart Grid Applications," Energies, MDPI, vol. 16(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3953-:d:1141806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    2. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    3. Whitson, John C. & Ramirez-Marquez, Jose Emmanuel, 2009. "Resiliency as a component importance measure in network reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1685-1693.
    4. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    2. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    3. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    4. Mohammad Najarian & Gino J. Lim, 2019. "Design and Assessment Methodology for System Resilience Metrics," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1885-1898, September.
    5. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Charani Shandiz, Saeid & Foliente, Greg & Rismanchi, Behzad & Wachtel, Amanda & Jeffers, Robert F., 2020. "Resilience framework and metrics for energy master planning of communities," Energy, Elsevier, vol. 203(C).
    7. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    8. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    9. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    11. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    13. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    14. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    15. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    16. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    18. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    19. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    20. Ruiying Li & Qiang Dong & Chong Jin & Rui Kang, 2017. "A New Resilience Measure for Supply Chain Networks," Sustainability, MDPI, vol. 9(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3953-:d:1141806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.