IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3720-d1133699.html
   My bibliography  Save this article

Experimental Investigation of the Influence of NO on a PEM Fuel Cell System and Voltage Recovery Strategies

Author

Listed:
  • Peter Reithuber

    (Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Inffeldgasse 19, 8010 Graz, Austria)

  • Florian Poimer

    (HyCentA Research GmbH, Inffeldgasse 15, 8010 Graz, Austria)

  • Stefan Brandstätter

    (HyCentA Research GmbH, Inffeldgasse 15, 8010 Graz, Austria)

  • Eberhard Schutting

    (Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Inffeldgasse 19, 8010 Graz, Austria)

  • Simon Buchberger

    (Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Inffeldgasse 19, 8010 Graz, Austria)

  • Alexander Trattner

    (Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Inffeldgasse 19, 8010 Graz, Austria
    HyCentA Research GmbH, Inffeldgasse 15, 8010 Graz, Austria)

  • Helmut Eichlseder

    (Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Inffeldgasse 19, 8010 Graz, Austria)

Abstract

Air contaminants can have detrimental effects on the performance and durability of proton exchange membrane (PEM) fuel cell vehicles. This research focuses on the experimental investigation of the effect of nitrogen monoxide (NO) in the cathode gas stream, which provokes a cell voltage decrease due to the partially reversible adsorption of NO on the platinum catalyst. The concentration and exposure time of NO in the cathode gas stream are varied at selected constant current densities and load ramps to assess the effects throughout the fuel cell system operating range. The results show the cell voltage loss in the presence of NO and reveal a near-catalyst saturation with increased injected NO mass. Additionally, several voltage recovery and mitigation strategies are introduced and discussed by presenting conclusions about the general effect of NO on a fuel cell system in operation. The most promising recovery strategy for fuel cell systems is identified, and the overall system degradation is discussed. All experiments are performed in a test bed environment on a 25 kW low-temperature fuel cell system via controlled injection of NO into the cathode gas stream.

Suggested Citation

  • Peter Reithuber & Florian Poimer & Stefan Brandstätter & Eberhard Schutting & Simon Buchberger & Alexander Trattner & Helmut Eichlseder, 2023. "Experimental Investigation of the Influence of NO on a PEM Fuel Cell System and Voltage Recovery Strategies," Energies, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3720-:d:1133699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaping Xie & Hao Yuan & Yufeng Wu & Chao Wang & Xuezhe Wei & Haifeng Dai, 2023. "Impedance Acquisition of Proton Exchange Membrane Fuel Cell Using Deeper Learning Network," Energies, MDPI, vol. 16(14), pages 1-18, July.
    2. Peter Reithuber & Christian Frühwirth & Simon Buchberger & Helmut Eichlseder, 2023. "Investigation of the Proton Exchange Membrane Fuel Cell System Cathode Exhaust Gas Composition Based on Test Bed Measurements," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    2. Lanre Olatomiwa & Ahmad A. Sadiq & Omowunmi Mary Longe & James G. Ambafi & Kufre Esenowo Jack & Toyeeb Adekunle Abd'azeez & Samuel Adeniyi, 2022. "An Overview of Energy Access Solutions for Rural Healthcare Facilities," Energies, MDPI, vol. 15(24), pages 1-23, December.
    3. Domenico Mazzeo & Cristina Baglivo & Simone Panico & Matteo Manieri & Nicoletta Matera & Paolo Maria Congedo, 2023. "Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems," Energies, MDPI, vol. 16(21), pages 1-20, October.
    4. Cameron Campbell-Stanway & Victor Becerra & Shanker Prabhu & James Bull, 2024. "Investigating the Role of Byproduct Oxygen in UK-Based Future Scenario Models for Green Hydrogen Electrolysis," Energies, MDPI, vol. 17(2), pages 1-38, January.
    5. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.
    6. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    7. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    8. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3720-:d:1133699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.