Multi-Horizon Wind Power Forecasting Using Multi-Modal Spatio-Temporal Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Branko Kosovic & Sue Ellen Haupt & Daniel Adriaansen & Stefano Alessandrini & Gerry Wiener & Luca Delle Monache & Yubao Liu & Seth Linden & Tara Jensen & William Cheng & Marcia Politovich & Paul Prest, 2020. "A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction," Energies, MDPI, vol. 13(6), pages 1-16, March.
- Dehua Zheng & Min Shi & Yifeng Wang & Abinet Tesfaye Eseye & Jianhua Zhang, 2017. "Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy," Energies, MDPI, vol. 10(12), pages 1-23, December.
- Lorenzo Donadio & Jiannong Fang & Fernando Porté-Agel, 2021. "Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
- Shaojun Yang & Hua Wei & Le Zhang & Shengchao Qin, 2021. "Daily Power Generation Forecasting Method for a Group of Small Hydropower Stations Considering the Spatial and Temporal Distribution of Precipitation—South China Case Study," Energies, MDPI, vol. 14(15), pages 1-19, July.
- Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marcin Kopyt & Paweł Piotrowski & Dariusz Baczyński, 2024. "Short-Term Energy Generation Forecasts at a Wind Farm—A Multi-Variant Comparison of the Effectiveness and Performance of Various Gradient-Boosted Decision Tree Models," Energies, MDPI, vol. 17(23), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
- Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
- Jeong, Michael & Loth, Eric & Qin, Chris & Selig, Michael & Johnson, Nick, 2024. "Aerodynamic rotor design for a 25 MW offshore downwind turbine," Applied Energy, Elsevier, vol. 353(PA).
- Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
- Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
- Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.
- Benabadji, Ahmed Soheyb & Rahmoun, Khadidja & Bahar, Faten Attig & Dahani, Abir & Martinez, Abel & Iglesias, Gregorio, 2025. "Geospatial LCOE analysis for floating offshore wind energy in SW Mediterranean Sea," Renewable Energy, Elsevier, vol. 245(C).
- Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
- Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
- Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
- Hugo T. V. Gouveia & Murilo A. Souza & Aida A. Ferreira & Jonata C. de Albuquerque & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Ronaldo R. B. de Aquino, 2023. "Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(6), pages 1-15, March.
- Hugo Tavares Vieira Gouveia & Ronaldo Ribeiro Barbosa De Aquino & Aida Araújo Ferreira, 2018. "Enhancing Short-Term Wind Power Forecasting through Multiresolution Analysis and Echo State Networks," Energies, MDPI, vol. 11(4), pages 1-19, April.
- Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
- Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
- Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
- Jinjing An & Guoping Chen & Zhuo Zou & Yaojie Sun & Ran Liu & Lirong Zheng, 2021. "An IoT-Based Traceability Platform for Wind Turbines," Energies, MDPI, vol. 14(9), pages 1-17, May.
- Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3522-:d:1126675. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.