IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3463-d1124097.html
   My bibliography  Save this article

Thermoelectric Field Analysis of Trapezoidal Thermoelectric Generator Based on the Explicit Analytical Solution of Annular Thermoelectric Generator

Author

Listed:
  • Wei Niu

    (School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China)

  • Xiaoshan Cao

    (School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China)

Abstract

The geometrical configuration is one of the main factors that affect the thermoelectric performance of a device. Research on the trapezoidal thermoelectric generator (TTEG) with varied cross section is mainly based on finite element simulation and experiment. In this paper, an explicit analytical solution of the maximum output power of annular thermoelectric generators (ATEG) is proposed, which has been proved to have high accuracy. Then, the maximum output power between ATEG and TTEG is compared. Results show that, for the appropriate geometric parameter δ , the relative error of maximum output power between explicit analytical ATEG and the simulated solution of TTEG can reach the order of 10 −3 . When the hot end is at the a side, the high temperature and θ is 510 K and 10°, respectively. For Bi 2 Te 3 material and PbTe material, the relative error of maximum output power between the explicit analytical and simulated solution is 0.0261% and 0.074%, respectively. Under suitable working conditions, the explicit analytical results of ATEG can provide some reference for the performance optimization of TTEG.

Suggested Citation

  • Wei Niu & Xiaoshan Cao, 2023. "Thermoelectric Field Analysis of Trapezoidal Thermoelectric Generator Based on the Explicit Analytical Solution of Annular Thermoelectric Generator," Energies, MDPI, vol. 16(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3463-:d:1124097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    2. Fateh, Haiyan & Baker, Chad A. & Hall, Matthew J. & Shi, Li, 2014. "High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space," Applied Energy, Elsevier, vol. 129(C), pages 373-383.
    3. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    4. Wang, Xuejian & Qi, Ji & Deng, Wei & Li, Gongping & Gao, Xudong & He, Luanxuan & Zhang, Shixu, 2021. "An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model," Energy, Elsevier, vol. 233(C).
    5. Yazawa, Kazuaki & Shakouri, Ali & Hendricks, Terry J., 2017. "Thermoelectric heat recovery from glass melt processes," Energy, Elsevier, vol. 118(C), pages 1035-1043.
    6. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    2. Kazuaki Yazawa & Ali Shakouri, 2021. "Heat Flux Based Optimization of Combined Heat and Power Thermoelectric Heat Exchanger," Energies, MDPI, vol. 14(22), pages 1-16, November.
    3. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    4. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    5. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    6. Miao, Zhuang & Meng, Xiangning & Zhou, Sen & Zhu, Miaoyong, 2020. "Thermo-mechanical analysis on thermoelectric legs arrangement of thermoelectric modules," Renewable Energy, Elsevier, vol. 147(P1), pages 2272-2278.
    7. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    8. Ma, Ting & Pandit, Jaideep & Ekkad, Srinath V. & Huxtable, Scott T. & Wang, Qiuwang, 2015. "Simulation of thermoelectric-hydraulic performance of a thermoelectric power generator with longitudinal vortex generators," Energy, Elsevier, vol. 84(C), pages 695-703.
    9. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    10. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.
    11. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Improved thermoelectric performance of a film device induced by densely columnar Cu electrode," Energy, Elsevier, vol. 70(C), pages 143-148.
    12. Miguel Araiz & Álvaro Casi & Leyre Catalán & Patricia Aranguren & David Astrain, 2021. "Thermoelectric Generator with Passive Biphasic Thermosyphon Heat Exchanger for Waste Heat Recovery: Design and Experimentation," Energies, MDPI, vol. 14(18), pages 1-19, September.
    13. Fatih Selimefendigil & Damla Okulu & Hakan F. Öztop, 2023. "Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    14. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    15. Karana, Dhruv Raj & Sahoo, Rashmi Rekha, 2019. "Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 90-99.
    16. Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
    17. Ju O Kang & Sung Chul Kim, 2019. "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery from a Billet Casting Process," Energies, MDPI, vol. 12(14), pages 1-13, July.
    18. Chen, Hao & Guo, Qi & Yang, Lu & Liu, Shenghua & Xie, Xuliang & Chen, Zhaoyang & Liu, Zengqiang, 2015. "A new six stroke single cylinder diesel engine referring Rankine cycle," Energy, Elsevier, vol. 87(C), pages 336-342.
    19. F. P. Brito & João Silva Peixoto & Jorge Martins & António P. Gonçalves & Loucas Louca & Nikolaos Vlachos & Theodora Kyratsi, 2021. "Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-21, September.
    20. Sourav Bhakta & Balaram Kundu, 2024. "A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization," Energies, MDPI, vol. 17(5), pages 1-49, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3463-:d:1124097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.