IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3105-d1110630.html
   My bibliography  Save this article

A Critical Review on the Status and Progress of Microalgae Cultivation in Outdoor Photobioreactors Conducted over 35 Years (1986–2021)

Author

Listed:
  • Nilay Kumar Sarker

    (School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia)

  • Prasad Kaparaju

    (School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia)

Abstract

Microalgae, a renewable bio-resource, are considered a potential value-added commodity and a tool to combat climate change. Microalgal research has received worldwide attention recently. Different perspectives have been explored, but cultivation in outdoor photobioreactors (PBRs) is still a less explored field. This review summarizes the studies conducted on the microalgae cultivated in outdoor PBRs only. The locations, algal strains, PBRs, and cultivation media used in these studies were identified and tabulated. Different aspects of outdoor algal cultivation in PBRs, such as temperature control, light intensity control, photosynthetic efficiency (PE), the outdoor adaptation of strains, PBR designs, and algal growth and biochemical composition variation from the weather, were studied and reviewed. A brief review of downstream processes and environmental and economic impacts was also conducted. This review summarizes what has been carried out in this field so far and will help researchers to determine what further work needs to be conducted and in which direction to proceed.

Suggested Citation

  • Nilay Kumar Sarker & Prasad Kaparaju, 2023. "A Critical Review on the Status and Progress of Microalgae Cultivation in Outdoor Photobioreactors Conducted over 35 Years (1986–2021)," Energies, MDPI, vol. 16(7), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3105-:d:1110630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alcinda P. Lopes & Francisca M. Santos & Tânia F. C. V. Silva & Vítor J. P. Vilar & José C. M. Pires, 2020. "Outdoor Cultivation of the Microalga Chlorella vulgaris in a New Photobioreactor Configuration: The Effect of Ultraviolet and Visible Radiation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Judith Rumin & Raimundo Gonçalves de Oliveira Junior & Jean-Baptiste Bérard & Laurent Picot, 2021. "Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development," Post-Print hal-03277815, HAL.
    3. Inês Guerra & Hugo Pereira & Margarida Costa & Joana T. Silva & Tamára Santos & João Varela & Marília Mateus & Joana Silva, 2021. "Operation Regimes: A Comparison Based on Nannochloropsis oceanica Biomass and Lipid Productivity," Energies, MDPI, vol. 14(6), pages 1-13, March.
    4. Martin Olofsson & Teresa Lamela & Emmelie Nilsson & Jean Pascal Bergé & Victória Del Pino & Pauliina Uronen & Catherine Legrand, 2012. "Seasonal Variation of Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale Photobioreactors," Energies, MDPI, vol. 5(5), pages 1-16, May.
    5. Slegers, P.M. & Wijffels, R.H. & van Straten, G. & van Boxtel, A.J.B., 2011. "Design scenarios for flat panel photobioreactors," Applied Energy, Elsevier, vol. 88(10), pages 3342-3353.
    6. Tredici, M.R. & Bassi, N. & Prussi, M. & Biondi, N. & Rodolfi, L. & Chini Zittelli, G. & Sampietro, G., 2015. "Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio," Applied Energy, Elsevier, vol. 154(C), pages 1103-1111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raslavičius, Laurencas & Felneris, Mantas & Pukalskas, Saugirdas & Rimkus, Alfredas & Melaika, Mindaugas, 2019. "Evaluation of P. moriformis oil and its blends with diesel fuel as promising contributors to transportation energy," Energy, Elsevier, vol. 189(C).
    2. Yadala, Soumya & Cremaschi, Selen, 2014. "Design and optimization of artificial cultivation units for algae production," Energy, Elsevier, vol. 78(C), pages 23-39.
    3. Alcinda P. Lopes & Francisca M. Santos & Tânia F. C. V. Silva & Vítor J. P. Vilar & José C. M. Pires, 2020. "Outdoor Cultivation of the Microalga Chlorella vulgaris in a New Photobioreactor Configuration: The Effect of Ultraviolet and Visible Radiation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    6. Naraharisetti, Pavan Kumar & Das, Probir & Sharratt, Paul N., 2017. "Critical factors in energy generation from microalgae," Energy, Elsevier, vol. 120(C), pages 138-152.
    7. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    8. Jack Hoeniges & Keyong Zhu & Jeremy Pruvost & Jack Legrand & El-khider Si-Ahmed & Laurent Pilon, 2021. "Impact of Dropwise Condensation on the Biomass Production Rate in Covered Raceway Ponds," Energies, MDPI, vol. 14(2), pages 1-23, January.
    9. Baldev, Edachery & Mubarakali, Davoodbasha & Saravanakumar, Kandasamy & Arutselvan, Chithirai & Alharbi, Naiyf S. & Alharbi, Sulaiman Ali & Sivasubramanian, Velusamy & Thajuddin, Nooruddin, 2018. "Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment," Renewable Energy, Elsevier, vol. 123(C), pages 486-498.
    10. Donghan Kang & Keug Tae Kim & Tae-Young Heo & Gyutae Kwon & Chaeseung Lim & Jungsu Park, 2019. "Inhibition of Photosynthetic Activity in Wastewater-Borne Microalgal–Bacterial Consortia under Various Light Conditions," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    11. Barbera, Elena & Sforza, Eleonora & Vecchiato, Luca & Bertucco, Alberto, 2017. "Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study," Energy, Elsevier, vol. 140(P1), pages 116-124.
    12. Qihang Jin & Zhenzong He & Huijie Ma, 2019. "Quantitative Research of Photobioreactor Performance Based on an Improved Surface Fitting Method," Energies, MDPI, vol. 12(21), pages 1-24, October.
    13. XU, Yaoyang & Boeing, Wiebke J., 2014. "Modeling maximum lipid productivity of microalgae: Review and next step," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 29-39.
    14. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    15. Kim, Sungwhan & Kim, Donghyun & Ryu, Byung-Gon & Chang, Yong Keun, 2020. "Design optimization of large-scale attached cultivation of Ettlia sp. to maximize biomass production based on simulation of solar irradiation," Applied Energy, Elsevier, vol. 279(C).
    16. Pires, José C.M. & Alvim-Ferraz, Maria C.M. & Martins, Fernando G., 2017. "Photobioreactor design for microalgae production through computational fluid dynamics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 248-254.
    17. Yang, Perry Pei-Ju & Quan, Steven Jige & Castro-Lacouture, Daniel & Stuart, Ben J., 2018. "A Geodesign method for managing a closed-loop urban system through algae cultivation," Applied Energy, Elsevier, vol. 231(C), pages 1372-1382.
    18. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    19. Nwoba, Emeka G. & Parlevliet, David A. & Laird, Damian W. & Alameh, Kamal & Louveau, Julien & Pruvost, Jeremy & Moheimani, Navid R., 2020. "Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity," Applied Energy, Elsevier, vol. 275(C).
    20. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3105-:d:1110630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.