IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4089-d280587.html
   My bibliography  Save this article

Quantitative Research of Photobioreactor Performance Based on an Improved Surface Fitting Method

Author

Listed:
  • Qihang Jin

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Zhenzong He

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Huijie Ma

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

The relationship between performance and working conditions in photobioreactor hydrogen production systems illuminated by a variable intensity light source has been described quantitatively using relational expressions. First, based on the finite volume method and the Michaelis-Menten model, the hydrogen production process of a photobioreactor (PBR) system was simulated numerically. Then, the performance of the PBR system was evaluated considering the hydrogen production rate, dimensionless hydrogen production rate, hydrogen production thrust coefficient and conversion efficiency of light energy to hydrogen energy rate as performance parameters, and the relationship between these parameters and working conditions was studied. Finally, the improved quantum-behaved particle swarm optimization (IQPSO) and surface fitting technique based on the curve fitting method were used to obtain relational expressions about the performance and working conditions of the PBR. All of the results show that the method can obtain accurately relational expressions for the performance optimization and forecasts of the PBR system.

Suggested Citation

  • Qihang Jin & Zhenzong He & Huijie Ma, 2019. "Quantitative Research of Photobioreactor Performance Based on an Improved Surface Fitting Method," Energies, MDPI, vol. 12(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4089-:d:280587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Slegers, P.M. & Wijffels, R.H. & van Straten, G. & van Boxtel, A.J.B., 2011. "Design scenarios for flat panel photobioreactors," Applied Energy, Elsevier, vol. 88(10), pages 3342-3353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadala, Soumya & Cremaschi, Selen, 2014. "Design and optimization of artificial cultivation units for algae production," Energy, Elsevier, vol. 78(C), pages 23-39.
    2. Alcinda P. Lopes & Francisca M. Santos & Tânia F. C. V. Silva & Vítor J. P. Vilar & José C. M. Pires, 2020. "Outdoor Cultivation of the Microalga Chlorella vulgaris in a New Photobioreactor Configuration: The Effect of Ultraviolet and Visible Radiation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    4. Jack Hoeniges & Keyong Zhu & Jeremy Pruvost & Jack Legrand & El-khider Si-Ahmed & Laurent Pilon, 2021. "Impact of Dropwise Condensation on the Biomass Production Rate in Covered Raceway Ponds," Energies, MDPI, vol. 14(2), pages 1-23, January.
    5. Kim, Sungwhan & Kim, Donghyun & Ryu, Byung-Gon & Chang, Yong Keun, 2020. "Design optimization of large-scale attached cultivation of Ettlia sp. to maximize biomass production based on simulation of solar irradiation," Applied Energy, Elsevier, vol. 279(C).
    6. Pires, José C.M. & Alvim-Ferraz, Maria C.M. & Martins, Fernando G., 2017. "Photobioreactor design for microalgae production through computational fluid dynamics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 248-254.
    7. Yang, Perry Pei-Ju & Quan, Steven Jige & Castro-Lacouture, Daniel & Stuart, Ben J., 2018. "A Geodesign method for managing a closed-loop urban system through algae cultivation," Applied Energy, Elsevier, vol. 231(C), pages 1372-1382.
    8. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    10. Behera, Bunushree & Aly, Nazimdhine & P., Balasubramanian, 2018. "Biophysical modeling of microalgal cultivation in open ponds," Ecological Modelling, Elsevier, vol. 388(C), pages 61-71.
    11. Monika Hejna & Dominika Kapuścińska & Anna Aksmann, 2022. "Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae," IJERPH, MDPI, vol. 19(13), pages 1-40, June.
    12. Slegers, P.M. & van Beveren, P.J.M. & Wijffels, R.H. & van Straten, G. & van Boxtel, A.J.B., 2013. "Scenario analysis of large scale algae production in tubular photobioreactors," Applied Energy, Elsevier, vol. 105(C), pages 395-406.
    13. van Boxtel, A.J.B. & Perez-Lopez, P. & Breitmayer, E. & Slegers, P.M., 2015. "The potential of optimized process design to advance LCA performance of algae production systems," Applied Energy, Elsevier, vol. 154(C), pages 1122-1127.
    14. Nilay Kumar Sarker & Prasad Kaparaju, 2023. "A Critical Review on the Status and Progress of Microalgae Cultivation in Outdoor Photobioreactors Conducted over 35 Years (1986–2021)," Energies, MDPI, vol. 16(7), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4089-:d:280587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.