IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3063-d1109195.html
   My bibliography  Save this article

Production of Biogas from Distillation Residue as a Waste Material from the Distillery Industry in Poland

Author

Listed:
  • Otton K. Roubinek

    (Łukasiewicz–Industrial Chemistry Institute, Department of Pharmacy, Cosmetic Chemistry and Biotechnology, 01-793 Warsaw, Poland)

  • Anna Wilinska-Lisowska

    (Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Magdalena Jasinska

    (Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland)

  • Andrzej G. Chmielewski

    (Laboratory of Stable Isotope, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland)

  • Krzysztof Czerwionka

    (Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

Abstract

In this paper, the possibility to obtain an alternative source of energy from methane fermentation, catalysed by biomass, has been discussed in detail. As a main substrate, the distillation residue from the distillery industry was taken in the case of mono-fermentation and its co-fermentation with sewage sludge. The results showed that higher biogas and methane production can be obtained in a mono-fermentation process. Fermentation lasted for 23 days, and during this time, 333.14 and 249.64 L/kg VS of the total biogas for mono- and co-fermentation was subsequently obtained, which gives around 63% and 50% of methane in both types of the process, respectively. Additionally, to interpret the experimental data obtained and to predict the trend of the accumulation curves, a simple Gompertz model has been applied. The application of the Gompertz model has enabled us to estimate some important parameters with a strict physical meaning, namely, the maximum production value of the biogas and its components, the production rate of a given gas, as well as the incubation phase time. Finally, an approximate analysis of the potential volume of biogas production was also carried out, based on the mass of distillation residue produced annually in Poland.

Suggested Citation

  • Otton K. Roubinek & Anna Wilinska-Lisowska & Magdalena Jasinska & Andrzej G. Chmielewski & Krzysztof Czerwionka, 2023. "Production of Biogas from Distillation Residue as a Waste Material from the Distillery Industry in Poland," Energies, MDPI, vol. 16(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3063-:d:1109195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Wąs & Piotr Sulewski & Vitaliy Krupin & Nazariy Popadynets & Agata Malak-Rawlikowska & Magdalena Szymańska & Iryna Skorokhod & Marcin Wysokiński, 2020. "The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production," Energies, MDPI, vol. 13(21), pages 1-20, November.
    2. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    3. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    4. Pengjiao Tian & Binbin Gong & Kaijian Bi & Yuxin Liu & Jing Ma & Xiqing Wang & Zhangsun Ouyang & Xian Cui, 2023. "Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability," IJERPH, MDPI, vol. 20(1), pages 1-14, January.
    5. Anna Wilinska-Lisowska & Monika Ossowska & Krzysztof Czerwionka, 2021. "The Influence of Co-Fermentation of Agri-Food Waste with Primary Sludge on Biogas Production and Composition of the Liquid Fraction of Digestate," Energies, MDPI, vol. 14(7), pages 1-20, March.
    6. Liming, Huang, 2009. "Financing rural renewable energy: A comparison between China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1096-1103, June.
    7. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    2. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    3. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    4. Adam Wąs & Piotr Sulewski & Nataliia Gerasymchuk & Ludmila Stepasyuk & Vitaliy Krupin & Zoia Titenko & Kinga Pogodzińska, 2022. "The Potential of Ukrainian Agriculture’s Biomass to Generate Renewable Energy in the Context of Climate and Political Challenges—The Case of the Kyiv Region," Energies, MDPI, vol. 15(18), pages 1-16, September.
    5. Jaco P. Weideman & Roula Inglesi-Lotz, 2016. "Structural Breaks in Renewable Energy in South Africa: A Bai and Perron Break Test Application," Working Papers 201636, University of Pretoria, Department of Economics.
    6. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    7. Łukasz Sobol & Arkadiusz Dyjakon & Alessandro Suardi & Rainer Preißmann, 2021. "Analysis of the Possibility of Energetic Utilization of Biomass Obtained from Grass Mowing of a Large-Area Golf Course—A Case Study of Tuscany," Energies, MDPI, vol. 14(17), pages 1-22, September.
    8. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    9. K. Branker & E. Shackles & J. M. Pearce, 2011. "Peer-to-peer financing mechanisms to accelerate renewable energy deployment," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 1(2), pages 138-155, April.
    10. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    11. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    12. Ankrah, Isaac & Lin, Boqiang, 2020. "Renewable energy development in Ghana: Beyond potentials and commitment," Energy, Elsevier, vol. 198(C).
    13. Sher, Hadeed Ahmed & Murtaza, Ali F & Addoweesh, Khaled E & Chiaberge, Marcello, 2015. "Pakistan’s progress in solar PV based energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 213-217.
    14. Ehiaze Augustine Ehimen & Peter Yamikani Sandula & Thomas Robin & Gregory Tsonga Gamula, 2023. "Improving Energy Access in Low-Income Sub-Saharan African Countries: A Case Study of Malawi," Energies, MDPI, vol. 16(7), pages 1-26, March.
    15. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    16. Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
    17. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Ming, Zeng & Song, Xue & Mingjuan, Ma & Lingyun, Li & Min, Cheng & Yuejin, Wang, 2013. "Historical review of demand side management in China: Management content, operation mode, results assessment and relative incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 470-482.
    19. Eitan, Avri & Herman, Lior & Fischhendler, Itay & Rosen, Gillad, 2019. "Community–private sector partnerships in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 95-104.
    20. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3063-:d:1109195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.