IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2747-d1098267.html
   My bibliography  Save this article

Experimental Study of Bio-Hydrogen Production by Clostridium beijerinckii from Different Substrates

Author

Listed:
  • Venko Beschkov

    (Laboratory of Bioengineering, Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)

  • Tsvetomila Parvanova-Mancheva

    (Laboratory of Bioengineering, Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)

  • Evgenia Vasileva

    (Laboratory of Bioengineering, Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)

Abstract

Glucose, alcohol stillage and glycerol were used as substrates for bio-hydrogen production by the newly isolated strain Clostridium beijerinckii 6A1 under batch conditions. High molar yields of hydrogen from the studied organic substrates were observed. There was a neat difference in the metabolic pathways of substrate digestion when hexose-based substrate or glycerol were used. The products of glycerol digestion showed that a pathway with no formic acid formation as intermediate was probable. In this case, considerable concentrations of acetic and propionic acid (up to 6 g dm −3 ) and small amounts of butanol were observed after 48 h. When glucose or hexose-based substrates were used, considerable amounts of formic acid (up to 6 g dm −3 ), i.e., the pathway proposed for Clostridia mixed cultures, were appropriate for the observed process of hydrogen release. For these substrates, considerable amounts of propionic acid in concentrations up to 1 g dm −3 were observed. That is why the pathway proposed for mixed cultures seemed more appropriate for our experiments carried out with hexose-based substrates. When hexoses were used, substrate digestion stopped the formation of acetic acid, propionic acid and ethanol. Probably, these intermediates are inhibitors to the further digestion to other products.

Suggested Citation

  • Venko Beschkov & Tsvetomila Parvanova-Mancheva & Evgenia Vasileva, 2023. "Experimental Study of Bio-Hydrogen Production by Clostridium beijerinckii from Different Substrates," Energies, MDPI, vol. 16(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2747-:d:1098267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianlong & Yin, Yanan, 2018. "Fermentative hydrogen production using various biomass-based materials as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 284-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
    2. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    3. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    5. Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Armando Oliva & Stefano Papirio & Giovanni Esposito & Piet N. L. Lens, 2023. "Impact of Chemical and Physical Pretreatment on Methane Potential of Peanut Shells," Energies, MDPI, vol. 16(12), pages 1-15, June.
    7. Nikolaj Kaae Kirk & Clara Navarrete & Jakob Ellegaard Juhl & José Luis Martínez & Alessandra Procentese, 2021. "The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study," Energies, MDPI, vol. 14(3), pages 1-19, January.
    8. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    9. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    10. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
    12. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    13. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Yin, Yanan & Wang, Jianlong, 2019. "Hydrogen production and energy recovery from macroalgae Saccharina japonica by different pretreatment methods," Renewable Energy, Elsevier, vol. 141(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2747-:d:1098267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.