IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2496-d1089225.html
   My bibliography  Save this article

Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles

Author

Listed:
  • Md Ragib Ahssan

    (Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Mehran Ektesabi

    (School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Saman Gorji

    (School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia)

Abstract

This paper proposes a three-parameter gearshift scheduling strategy that has been implemented on both large and small electric vehicles with two-speed transmission systems. The new strategy evaluates vehicle performance under varying driving conditions on flat and hilly roads by assessing the vehicle speed, acceleration, and road grade. A heuristic approach is used to develop two gearshift schedules for vehicle acceleration and road grade, and gradient descent and pattern search methods are applied to optimize the gear ratios and primary gearshift schedules. The results show that the proposed gearshift strategy saves 16.5% of energy on hilly roads compared to conventional approaches. Optimal gearshift schedules for acceleration provide more room for second gear operation, while optimized gearshift schedules for the road grade increase the buffer zone for larger vehicles and allow more space for the second gear operating area. The experimental results validate the proposed approach’s performance for both large and small electric vehicles.

Suggested Citation

  • Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2496-:d:1089225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenchen Shen & Huilong Yu & Yuhui Hu & Junqiang Xi, 2016. "Optimization of Shift Schedule for Hybrid Electric Vehicle with Automated Manual Transmission," Energies, MDPI, vol. 9(3), pages 1-11, March.
    2. Lin, Cheng & Zhao, Mingjie & Pan, Hong & Yi, Jiang, 2019. "Blending gear shift strategy design and comparison study for a battery electric city bus with AMT," Energy, Elsevier, vol. 185(C), pages 1-14.
    3. Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
    4. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    5. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    6. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    7. Senqi Tan & Jue Yang & Xinxin Zhao & Tingting Hai & Wenming Zhang, 2018. "Gear Ratio Optimization of a Multi-Speed Transmission for Electric Dump Truck Operating on the Structure Route," Energies, MDPI, vol. 11(6), pages 1-17, May.
    8. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    9. Peng Wu & Penghui Qiang & Tao Pan & Huaiquan Zang, 2022. "Multi-Objective Optimization of Gear Ratios of a Seamless Three-Speed Automated Manual Transmission for Electric Vehicles Considering Shift Performance," Energies, MDPI, vol. 15(11), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    2. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    3. Peng Wu & Penghui Qiang & Tao Pan & Huaiquan Zang, 2022. "Multi-Objective Optimization of Gear Ratios of a Seamless Three-Speed Automated Manual Transmission for Electric Vehicles Considering Shift Performance," Energies, MDPI, vol. 15(11), pages 1-27, June.
    4. Gao, Bingzhao & Meng, Dele & Shi, Wentong & Cai, Wenqi & Dong, Shiying & Zhang, Yuanjian & Chen, Hong, 2022. "Topology optimization and the evolution trends of two-speed transmission of EVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    6. Hong, Xianqian & Wu, Jinglai & Zhang, Nong & Wang, Bing, 2022. "Energy efficiency optimization of Simpson planetary gearset based dual-motor powertrains for electric vehicles," Energy, Elsevier, vol. 259(C).
    7. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    8. Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
    9. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    10. Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
    11. Shilei Zhou & Paul Walker & Yang Tian & Cong Thanh Nguyen & Nong Zhang, 2021. "Comparison on Energy Economy and Vibration Characteristics of Electric and Hydraulic in-Wheel Drive Vehicles," Energies, MDPI, vol. 14(8), pages 1-15, April.
    12. Antti Ritari & Jari Vepsäläinen & Klaus Kivekäs & Kari Tammi & Heikki Laitinen, 2020. "Energy Consumption and Lifecycle Cost Analysis of Electric City Buses with Multispeed Gearboxes," Energies, MDPI, vol. 13(8), pages 1-21, April.
    13. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    14. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).
    15. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.
    16. Bolin He & Yong Chen & Qiang Wei & Cong Wang & Changyin Wei & Xiaoyu Li, 2023. "Performance Comparison of Pure Electric Vehicles with Two-Speed Transmission and Adaptive Gear Shifting Strategy Design," Energies, MDPI, vol. 16(7), pages 1-21, March.
    17. Mingjie Zhao & Junhui Shi & Cheng Lin & Junzhi Zhang, 2018. "Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission," Energies, MDPI, vol. 11(2), pages 1-16, February.
    18. Lin, Cheng & Zhao, Mingjie & Pan, Hong & Yi, Jiang, 2019. "Blending gear shift strategy design and comparison study for a battery electric city bus with AMT," Energy, Elsevier, vol. 185(C), pages 1-14.
    19. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    20. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2496-:d:1089225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.