IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018102.html
   My bibliography  Save this article

Energy efficiency optimization of Simpson planetary gearset based dual-motor powertrains for electric vehicles

Author

Listed:
  • Hong, Xianqian
  • Wu, Jinglai
  • Zhang, Nong
  • Wang, Bing

Abstract

The improvement of powertrain energy efficiency is of great significance to improve the driving range of electric vehicles. This paper proposes four configurations of Simpson planetary gearset-based dual-motor powertrain (SPGDMP) and optimizes their parameters. The powertrain energy efficiency is obtained through the scalable motor model and the gear ratio-dependent transmission efficiency model. The influence of powertrain parameters is then analyzed to determine the design variables. An improved economic performance indicator with less computational cost is proposed, which can reduce the computational time by 98.82% compared with the conventional economic indicator calculated by the dynamic programming (DP) algorithm. Considering the trade-off between dynamic and economic performance, the multi-objective optimization model is proposed, which gains the discrete Pareto front by the NSGA-Ⅱ and makes the discrete Pareto front continuous by neural network fitting (NNF). The optimization results show that compared with a widely studied torque coupled dual-motor powertrain (TCDMP), SPGDMPs can reduce the energy consumption and motors power by at least 5.02% and 14.56%, respectively. The energy efficiency of SPGDMPs has a little improvement when the powertrain equips with more brakes.

Suggested Citation

  • Hong, Xianqian & Wu, Jinglai & Zhang, Nong & Wang, Bing, 2022. "Energy efficiency optimization of Simpson planetary gearset based dual-motor powertrains for electric vehicles," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018102
    DOI: 10.1016/j.energy.2022.124908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. Zhang, Shuo & Xiong, Rui & Zhang, Chengning, 2015. "Pontryagin’s Minimum Principle-based power management of a dual-motor-driven electric bus," Applied Energy, Elsevier, vol. 159(C), pages 370-380.
    3. Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
    4. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    5. Zhao, Mingjie & Shi, Junhui & Lin, Cheng, 2019. "Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus," Applied Energy, Elsevier, vol. 243(C), pages 21-34.
    6. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    7. Ruan, Jiageng & Walker, Paul David & Zhang, Nong & Wu, Jinglai, 2017. "An investigation of hybrid energy storage system in multi-speed electric vehicle," Energy, Elsevier, vol. 140(P1), pages 291-306.
    8. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    9. Yuping Zeng & Zhikai Huang & Yang Cai & Yonggang Liu & Yue Xiao & Yang Shang, 2018. "A Control Strategy for Driving Mode Switches of Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    10. Yuan, Jingni & Yang, Lin, 2019. "Predictive energy management strategy for connected 48V hybrid electric vehicles," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    2. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    3. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
    2. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
    3. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    4. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    5. Gao, Bingzhao & Meng, Dele & Shi, Wentong & Cai, Wenqi & Dong, Shiying & Zhang, Yuanjian & Chen, Hong, 2022. "Topology optimization and the evolution trends of two-speed transmission of EVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    7. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    8. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    9. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    10. Ying Yang & Zhenpo Wang & Shuo Wang & Ni Lin, 2022. "An Investigation of Opportunity Charging with Hybrid Energy Storage System on Electric Bus with Two-Speed Transmission," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    11. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    12. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    13. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    14. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    15. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    16. Yu, Xiao & Lin, Cheng & Xie, Peng & Liang, Sheng, 2022. "A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 256(C).
    17. Yu, Xiao & Lin, Cheng & Zhao, Mingjie & Yi, Jiang & Su, Yue & Liu, Huimin, 2022. "Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    18. Ruan, Jiageng & Song, Qiang & Yang, Weiwei, 2019. "The application of hybrid energy storage system with electrified continuously variable transmission in battery electric vehicle," Energy, Elsevier, vol. 183(C), pages 315-330.
    19. Yu, Jin & Song, Yurun & Zhang, Huasen & Dong, Xiaohan, 2022. "Novel design of compound coupled hydro-mechanical transmission on heavy-duty vehicle for energy recycling," Energy, Elsevier, vol. 239(PD).
    20. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.