IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2281-d1081898.html
   My bibliography  Save this article

Generalised Isentropic Relations in Thermodynamics

Author

Listed:
  • Pim Nederstigt

    (Department of Process & Energy, Delft University of Technology, 2628 CD Delft, The Netherlands
    A former researcher in Department of Process & Energy TU Delft.)

  • Rene Pecnik

    (Department of Process & Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Isentropic processes in thermodynamics are fundamental to our understanding of numerous physical phenomena across different scientific and engineering fields. They provide a theoretical reference case for the evaluation of real thermodynamic processes and observations. Yet, as analytical relations for isentropic transformations in gas dynamics are limited to ideal gases, the inability to analytically describe isentropic processes for non-ideal gases is a fundamental shortcoming. This work presents generalised isentropic relations in thermodynamics based on the work by Kouremenos et al., where three isentropic exponents γ P v , γ T v and γ P T are introduced to replace the ideal gas isentropic exponent γ to incorporate the departure from the non-ideal gas behaviour. The general applicability of the generalised isentropic relations is presented by exploring its connections to existing isentropic models for ideal gases and incompressible liquids. Generalised formulations for the speed of sound, the Bernoulli equation, compressible isentropic flow transformations, and isentropic work are presented thereafter, connecting previously disjoint theories for gases and liquids. Lastly, the generalised expressions are demonstrated for practical engineering examples, and their accuracy is discussed.

Suggested Citation

  • Pim Nederstigt & Rene Pecnik, 2023. "Generalised Isentropic Relations in Thermodynamics," Energies, MDPI, vol. 16(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2281-:d:1081898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    2. Xiaojian Li & Yijia Zhao & Huadong Yao & Ming Zhao & Zhengxian Liu, 2020. "A New Method for Impeller Inlet Design of Supercritical CO 2 Centrifugal Compressors in Brayton Cycles," Energies, MDPI, vol. 13(19), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Yao, Yue & Ma, Yue & Wang, Chenpeng & Ye, Hao & Liu, Yinglong & Liu, Jiawei & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Yang, Huazheng & Liang, Bo, 2022. "A cofuel channel microtubular solid oxide fuel/electrolysis cell," Applied Energy, Elsevier, vol. 327(C).
    3. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    4. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    5. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    6. Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
    7. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2023. "Analytical sensitivity analysis of radial natural gas networks," Energy, Elsevier, vol. 263(PC).
    8. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    9. Zhang, Bin & Wu, Xuewei & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Coordinated carbon capture systems and power-to-gas dynamic economic energy dispatch strategy for electricity–gas coupled systems considering system uncertainty: An improved soft actor–critic approach," Energy, Elsevier, vol. 271(C).
    10. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    11. Akulker, Handan & Aydin, Erdal, 2023. "Optimal design and operation of a multi-energy microgrid using mixed-integer nonlinear programming: Impact of carbon cap and trade system and taxing on equipment selections," Applied Energy, Elsevier, vol. 330(PA).
    12. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).
    13. Xu, Da & Bai, Ziyi & Jin, Xiaolong & Yang, Xiaodong & Chen, Shuangyin & Zhou, Ming, 2022. "A mean-variance portfolio optimization approach for high-renewable energy hub," Applied Energy, Elsevier, vol. 325(C).
    14. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    15. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2281-:d:1081898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.