IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1723-d1062823.html
   My bibliography  Save this article

Cost Efficiency Analysis of H 2 Production from Formic Acid by Molecular Catalysts

Author

Listed:
  • Maria Solakidou

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Aikaterini Gemenetzi

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Georgia Koutsikou

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Marinos Theodorakopoulos

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Yiannis Deligiannakis

    (Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece)

  • Maria Louloudi

    (Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

Abstract

The development of low-carbon technologies that will facilitate the efficient use of hydrogen (H 2 ) as an energy carrier is a critical requirement of contemporary society. To this end, it is anticipated that the cost of H 2 production will become a key factor in tandem with production efficiency, process safety, and transport. Much effort has been made to create and develop new, reversible, and sustainable H 2 storage systems. Among current techniques, formic acid (FA) has been identified as an efficient energy carrier for H 2 storage. Numerous homogeneous catalysts based on transition metals with high activity and selectivity have been reported for selective FA dehydrogenation. In this review, we outline the recent advances in transition-metal molecular catalysts for FA dehydrogenation. Selected catalytic systems that could be implemented on an industrial scale and considered potential materials in fuel cell (FC) technology have been cost-evaluated. We highlight some critical engineering challenges faced during the technology’s scale-up process and explain other factors that are frequently ignored by academic researchers. Finally, we offer a critical assessment and identify several system limitations on an industrial scale that are currently impeding future implementation.

Suggested Citation

  • Maria Solakidou & Aikaterini Gemenetzi & Georgia Koutsikou & Marinos Theodorakopoulos & Yiannis Deligiannakis & Maria Louloudi, 2023. "Cost Efficiency Analysis of H 2 Production from Formic Acid by Molecular Catalysts," Energies, MDPI, vol. 16(4), pages 1-36, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1723-:d:1062823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marinos Theodorakopoulos & Maria Solakidou & Yiannis Deligiannakis & Maria Louloudi, 2021. "A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O 2," Energies, MDPI, vol. 14(2), pages 1-10, January.
    2. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    3. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    4. Panagiota Stathi & Maria Solakidou & Maria Louloudi & Yiannis Deligiannakis, 2020. "From Homogeneous to Heterogenized Molecular Catalysts for H 2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts," Energies, MDPI, vol. 13(3), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    2. Maria Solakidou & Yiannis Georgiou & Yiannis Deligiannakis, 2021. "Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO 2 Nanophotocatalysts for Efficient H 2 Production," Energies, MDPI, vol. 14(4), pages 1-16, February.
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    5. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    7. Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    8. Muhammad Asyraf Azni & Rasyikah Md Khalid, 2021. "Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    9. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    10. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    11. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    12. Dmitri A. Bulushev, 2021. "Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol," Energies, MDPI, vol. 14(20), pages 1-5, October.
    13. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    14. van Beek, Andries & Groote Schaarsberg, Mirjam & Borm, Peter & Hamers, Herbert & Veneman, Mattijs, 2023. "Cost Allocation in CO2 Transport for CCUS Hubs : a Multi-Actor Perspective," Other publications TiSEM 4f99c444-6676-4887-b7b8-5, Tilburg University, School of Economics and Management.
    15. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    16. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    17. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    18. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    19. van Beek, Andries, 2023. "Solutions in multi-actor projects with collaboration and strategic incentives," Other publications TiSEM 3739c498-5edb-442f-87d8-c, Tilburg University, School of Economics and Management.
    20. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1723-:d:1062823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.