IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p481-d482201.html
   My bibliography  Save this article

A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O 2

Author

Listed:
  • Marinos Theodorakopoulos

    (Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, GR45110 Ioannina, Greece)

  • Maria Solakidou

    (Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, GR45110 Ioannina, Greece)

  • Yiannis Deligiannakis

    (Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, GR45110 Ioannina, Greece
    Institute of Environment & Sustainable Development, University Research Center of Ioannina, GR45110 Ioannina, Greece)

  • Maria Louloudi

    (Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, GR45110 Ioannina, Greece
    Institute of Environment & Sustainable Development, University Research Center of Ioannina, GR45110 Ioannina, Greece)

Abstract

Commercial use of H 2 production catalysts requires a repeated use/stop/store and reuse of the catalyst. Ideally, this cycle should be possible under ambient O 2 . Herein we exemplify the concept of Use-Store-Reuse (USR) of a (Ru-phosphine) catalyst in a biphasic catalytic system, for H 2 production via dehydrogenation of HCOOH. The catalytic system can operate uninterrupted for at least four weeks, including storage and reuse cycles, with negligible loss of its catalytic efficiency. The catalytic system consisted of a RuP(CH 2 CH 2 PPh 2 ) 3 (i.e. RuPP3) in ( tri -glyme/water) system, using KOH as a cocatalyst, to promote HCOOH deprotonation. In a USR cycle of 1 week, followed by storage for three weeks under ambient air and reuse, the system achieved in total TONs > 90,000 and TOFs > 4000 h −1 . Thus, for the first time, a USR concept with a readily available stable ruthenium catalyst is presented, operating without any protection from O 2 or light, and able to retain its catalytic performance.

Suggested Citation

  • Marinos Theodorakopoulos & Maria Solakidou & Yiannis Deligiannakis & Maria Louloudi, 2021. "A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O 2," Energies, MDPI, vol. 14(2), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:481-:d:482201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagiota Stathi & Maria Solakidou & Maria Louloudi & Yiannis Deligiannakis, 2020. "From Homogeneous to Heterogenized Molecular Catalysts for H 2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts," Energies, MDPI, vol. 13(3), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Solakidou & Aikaterini Gemenetzi & Georgia Koutsikou & Marinos Theodorakopoulos & Yiannis Deligiannakis & Maria Louloudi, 2023. "Cost Efficiency Analysis of H 2 Production from Formic Acid by Molecular Catalysts," Energies, MDPI, vol. 16(4), pages 1-36, February.
    2. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    3. Maria Solakidou & Yiannis Georgiou & Yiannis Deligiannakis, 2021. "Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO 2 Nanophotocatalysts for Efficient H 2 Production," Energies, MDPI, vol. 14(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    2. Dmitri A. Bulushev, 2021. "Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol," Energies, MDPI, vol. 14(20), pages 1-5, October.
    3. Panagiota Stathi & Maria Solakidou & Areti Zindrou & Loukas Belles & Yiannis Deligiannakis, 2023. "Atomic {Pd n+ -X} States at Nanointerfaces: Implications in Energy-Related Catalysis," Energies, MDPI, vol. 16(2), pages 1-36, January.
    4. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    5. Maria Solakidou & Aikaterini Gemenetzi & Georgia Koutsikou & Marinos Theodorakopoulos & Yiannis Deligiannakis & Maria Louloudi, 2023. "Cost Efficiency Analysis of H 2 Production from Formic Acid by Molecular Catalysts," Energies, MDPI, vol. 16(4), pages 1-36, February.
    6. Maria Solakidou & Yiannis Georgiou & Yiannis Deligiannakis, 2021. "Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO 2 Nanophotocatalysts for Efficient H 2 Production," Energies, MDPI, vol. 14(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:481-:d:482201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.