IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p897-d1034047.html
   My bibliography  Save this article

A Review on Industrial CO 2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes

Author

Listed:
  • Hao Chen

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yuye Jiang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Kai Zhu

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jingwen Yang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yanxia Fu

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shuang Wang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Microalgae is a promising metabolism microorganism for the fixation of CO 2 from industrial gas while accumulating microalgae biomass. The process of CO 2 fixation by microalgae is able to be significantly improved by the regulation of phytohormones. However, the complex metabolic mechanism of microalgae regulated by phytohormones and abiotic stress on CO 2 fixation deserves to be explored. To systematically understand the existing status and establish a foundation for promoting the technology, this paper reviews investigations on the metabolic mechanism of microalgae regulated by phytohormones. The influences of nitrogen stress, light intensity stress, heavy metal stress, and salinity stress on CO 2 fixation and lipid production are summarized. In addition, a comprehensive overview of the multistage regulation of phytohormones and abiotic stress on CO 2 fixation and lipid production through microalgae is presented. The recent advances in CO 2 transfer reinforcement and light transmission reinforcement in photobioreactors are discussed. This review provides an insight into the enhancement of CO 2 fixation by microalgae regulated by phytohormones, abiotic stress, and mass transfer in multistage photobioreactors.

Suggested Citation

  • Hao Chen & Yuye Jiang & Kai Zhu & Jingwen Yang & Yanxia Fu & Shuang Wang, 2023. "A Review on Industrial CO 2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes," Energies, MDPI, vol. 16(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:897-:d:1034047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrien Burlacot & Ousmane Dao & Pascaline Auroy & Stephan Cuiné & Yonghua Li-Beisson & Gilles Peltier, 2022. "Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism," Nature, Nature, vol. 605(7909), pages 366-371, May.
    2. El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.
    3. Phukan, Mayur M. & Chutia, Rahul S. & Konwar, B.K. & Kataki, R., 2011. "Microalgae Chlorella as a potential bio-energy feedstock," Applied Energy, Elsevier, vol. 88(10), pages 3307-3312.
    4. Seyed Hosseini, Nekoo & Shang, Helen & Scott, John Ashley, 2018. "Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 458-469.
    5. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Lim, Yi An & Ilankoon, I.M.S.K. & Chong, Meng Nan & Foo, Su Chern, 2023. "Improving microalgae growth and carbon capture through micro-size bubbles generation in flat-panel photobioreactors: Impacts of different gas sparger designs on mixing performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Hossain, Nazia & Zaini, Juliana & Mahlia, T.M.I. & Azad, Abul K., 2019. "Elemental, morphological and thermal analysis of mixed microalgae species from drain water," Renewable Energy, Elsevier, vol. 131(C), pages 617-624.
    4. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    8. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    9. Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.
    10. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    11. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    12. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    13. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    14. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    15. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    16. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    17. Choi, Hong Il & Sung, Young Joon & Hong, Min Eui & Han, Jonghee & Min, Byoung Koun & Sim, Sang Jun, 2022. "Reconsidering the potential of direct microalgal biomass utilization as end-products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    19. Ana F. Esteves & Olívia S. G. P. Soares & Vítor J. P. Vilar & José C. M. Pires & Ana L. Gonçalves, 2020. "The Effect of Light Wavelength on CO 2 Capture, Biomass Production and Nutrient Uptake by Green Microalgae: A Step Forward on Process Integration and Optimisation," Energies, MDPI, vol. 13(2), pages 1-14, January.
    20. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:897-:d:1034047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.