IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p591-d1024723.html
   My bibliography  Save this article

Study of a Pilot Scale Microbial Electrosynthesis Reactor for Organic Waste Biorefinery

Author

Listed:
  • Jiang-Hao Tian

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Rémy Lacroix

    (6TMIC Ingénieries, 9 Rue du Développement, 31320 Castanet-Tolosan, France)

  • Asim Ali Yaqoob

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Chrystelle Bureau

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Cédric Midoux

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Elie Desmond-Le Quéméner

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France
    INRAE, University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France)

  • Théodore Bouchez

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

Abstract

Microbial electrochemical technologies now enable microbial electrosynthesis (MES) of organic compounds using microbial electrolysis cells handling waste organic materials. An electrolytic cell with an MES cathode may generate soluble organic molecules at a higher market price than biomethane, thereby satisfying both economic and environmental goals. However, the long-term viability of bioanode activity might become a major concern. In this work, a 15-L MES reactor was designed with specific electrode configurations. An electrochemical model was established to assess the feasibility and possible performance of the design, considering the aging of the bioanode. The reactor was then constructed and tested for performance as well as a bioanode regeneration assay. Biowaste from an industrial deconditioning platform was used as a substrate for bioanode. The chemical oxygen demand (COD) removal rate in the anodic chamber reached 0.83 g day −1 L −1 of anolyte. Acetate was produced with a rate of 0.53 g day −1 L −1 of catholyte, reaching a maximum concentration of 8.3 g L −1 . A potential difference (from 0.6 to 1.2 V) was applied between the bioanode and biocathode independent of reference electrodes. The active biocathode was dominated by members of the genus Pseudomonas , rarely reported so far for MES activity.

Suggested Citation

  • Jiang-Hao Tian & Rémy Lacroix & Asim Ali Yaqoob & Chrystelle Bureau & Cédric Midoux & Elie Desmond-Le Quéméner & Théodore Bouchez, 2023. "Study of a Pilot Scale Microbial Electrosynthesis Reactor for Organic Waste Biorefinery," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:591-:d:1024723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    2. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    2. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    4. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    5. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    6. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Arpita Nandy & Mohita Sharma & Senthil Velan Venkatesan & Nicole Taylor & Lisa Gieg & Venkataraman Thangadurai, 2019. "Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge," Energies, MDPI, vol. 12(6), pages 1-14, March.
    9. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Jiseon You & Lauren Wallis & Nevena Radisavljevic & Grzegorz Pasternak & Vincenzo M. Sglavo & Martin M Hanczyc & John Greenman & Ioannis Ieropoulos, 2019. "A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards “Living” Bricks," Energies, MDPI, vol. 12(21), pages 1-13, October.
    11. Benavidez, Justin R. & Thayer, Anastasia W. & Anderson, David P., 2019. "Poo Power: Revisiting Biogas Generation Potential on Dairy Farms in Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(4), pages 682-700, November.
    12. Kathrin Bienert & Britt Schumacher & Martín Rojas Arboleda & Eric Billig & Samiksha Shakya & Gustav Rogstrand & Marcin Zieliński & Marcin Dębowski, 2019. "Multi-Indicator Assessment of Innovative Small-Scale Biomethane Technologies in Europe," Energies, MDPI, vol. 12(7), pages 1-32, April.
    13. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.
    14. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Simeng Li & Gang Chen & Aavudai Anandhi, 2018. "Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review," Energies, MDPI, vol. 11(11), pages 1-21, October.
    16. An, Qian & Cheng, Jing-Rong & Wang, Yu-Tao & Zhu, Ming-Jun, 2020. "Performance and energy recovery of single and two stage biogas production from paper sludge: Clostridium thermocellum augmentation and microbial community analysis," Renewable Energy, Elsevier, vol. 148(C), pages 214-222.
    17. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    18. Ma, Lei & Zhou, Lei & Ruan, Meng-Ya & Gu, Ji-Dong & Mu, Bo-Zhong, 2019. "Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron," Renewable Energy, Elsevier, vol. 132(C), pages 861-870.
    19. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    20. Brémond, Ulysse & Bertrandias, Aude & Loisel, Denis & Jimenez, Julie & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2020. "Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants," Renewable Energy, Elsevier, vol. 149(C), pages 641-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:591-:d:1024723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.