IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8109-d1301803.html
   My bibliography  Save this article

The Transient Cooling Performance of a Compact Thin-Film Thermoelectric Cooler with Horizontal Structure

Author

Listed:
  • Tingzhen Ming

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
    Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572004, China)

  • Lijun Liu

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Peng Zhang

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Yonggao Yan

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China)

  • Yongjia Wu

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
    Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572004, China)

Abstract

Thermoelectric cooling is an ideal solution for chip heat dissipation due to its characteristics of no refrigerant, no vibration, no moving parts, and easy integration. Compared with a traditional thermoelectric device, a thin-film thermoelectric device significantly improves the cooling density and has tremendous advantages in the temperature control of electronic devices with high-power pulses. In this paper, the transient cooling performance of a compact thin-film thermoelectric cooler with a horizontal structure was studied. A 3D multi-physics field numerical model with the Thomson effect considered was established. And the effects of impulse current, thermoelectric leg length, pulse current imposition time, and the size of the contact thermal resistance on the cooling performance of the device were comprehensively investigated. The results showed that the model achieved an active cooling temperature difference of 25.85 K when an impulse current of 0.26 A was imposed. The longer the length of the thermoelectric leg was, the more unfavorable it was to the chip heat dissipation. Due to the small contact area between different sections of the device, the effect of contact thermal resistance on the cooling performance of the device was moderate.

Suggested Citation

  • Tingzhen Ming & Lijun Liu & Peng Zhang & Yonggao Yan & Yongjia Wu, 2023. "The Transient Cooling Performance of a Compact Thin-Film Thermoelectric Cooler with Horizontal Structure," Energies, MDPI, vol. 16(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8109-:d:1301803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Di & Cai, Yang & Zhao, Fu-Yun, 2017. "Optimal design of thermoelectric cooling system integrated heat pipes for electric devices," Energy, Elsevier, vol. 128(C), pages 403-413.
    2. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    3. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    4. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Dongfang & Shen, Limei & Chen, Huanxin & Jiang, Bin & Jie, Desuan & Liu, Huanyu & Yao, Yu & Tang, Jingchun, 2020. "Modeling and analysis of the influence of Thomson effect on micro-thermoelectric coolers considering interfacial and size effects," Energy, Elsevier, vol. 196(C).
    2. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    3. Gong, Tingrui & Wu, Yongjia & Gao, Lei & Zhang, Long & Li, Juntao & Ming, Tingzhen, 2019. "Thermo-mechanical analysis on a compact thermoelectric cooler," Energy, Elsevier, vol. 172(C), pages 1211-1224.
    4. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    5. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    6. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    7. Alessandro Bellucci & Stefano Orlando & Luca Medici & Antonio Lettino & Alessio Mezzi & Saulius Kaciulis & Daniele Maria Trucchi, 2023. "Nanostructured Thermoelectric PbTe Thin Films with Ag Addition Deposited by Femtosecond Pulsed Laser Ablation," Energies, MDPI, vol. 16(7), pages 1-14, April.
    8. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    9. Zinovi Dashevsky & Sergii Mamykin & Bohdan Dzundza & Mark Auslender & Roni Z. Shneck, 2023. "A Review of Nanocrystalline Film Thermoelectrics on Lead Chalcogenide Semiconductors: Progress and Application," Energies, MDPI, vol. 16(9), pages 1-19, April.
    10. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    11. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    12. Kwan, T.H. & Shen, Y. & Pei, G., 2021. "Recycling fuel cell waste heat to the thermoelectric cooler for enhanced combined heat, power and water production," Energy, Elsevier, vol. 223(C).
    13. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    14. Zhang, T., 2016. "New thinking on modeling of thermoelectric devices," Applied Energy, Elsevier, vol. 168(C), pages 65-74.
    15. Wu, Yongjia & Zuo, Lei & Chen, Jie & Klein, Jackson A., 2016. "A model to analyze the device level performance of thermoelectric generator," Energy, Elsevier, vol. 115(P1), pages 591-603.
    16. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    17. A. S. Abdel Moghny & Samia E. Attia Negm & Sh. Heikal & A. A. Bahgat, 2025. "New positive mixed alkali effect in V2O5.nH2O nanocrystalline films," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(4), pages 1-10, April.
    18. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Improved thermoelectric performance of a film device induced by densely columnar Cu electrode," Energy, Elsevier, vol. 70(C), pages 143-148.
    19. Dewen Xie & Jingtao Xu & Guoqiang Liu & Zhu Liu & Hezhu Shao & Xiaojian Tan & Jun Jiang & Haochuan Jiang, 2016. "Synergistic Optimization of Thermoelectric Performance in P-Type Bi 0.48 Sb 1.52 Te 3 /Graphene Composite," Energies, MDPI, vol. 9(4), pages 1-9, March.
    20. Yong Du & Jia Li & Jiayue Xu & Per Eklund, 2019. "Thermoelectric Properties of Reduced Graphene Oxide/Bi 2 Te 3 Nanocomposites," Energies, MDPI, vol. 12(12), pages 1-10, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8109-:d:1301803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.