IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7766-d1287595.html
   My bibliography  Save this article

The Economic Importance of Offshore Wind Energy Development in Poland

Author

Listed:
  • Agnieszka Brelik

    (Faculty of Economics, West Pomeranian University of Technology in Szczecin, Zolnierska str. 47, 71-210 Szczecin, Poland)

  • Piotr Nowaczyk

    (Faculty of Economics, West Pomeranian University of Technology in Szczecin, Zolnierska str. 47, 71-210 Szczecin, Poland)

  • Katarzyna Cheba

    (Faculty of Economics, West Pomeranian University of Technology in Szczecin, Zolnierska str. 47, 71-210 Szczecin, Poland)

Abstract

The European Union’s climate policy aims to reduce greenhouse gas emissions by 55% by 2030 and to achieve climate neutrality by 2050. One of the instruments for achieving these climate goals is the development of offshore wind energy. Unfortunately, Poland, as one of the few European Union countries with access to the sea, does not have offshore wind farms yet. The purpose of this article is to determine the importance of offshore wind energy for the development of Poland based on the example of two sea regions: the West Pomeranian and Pomeranian Voivodeships. This article uses the input–output method to determine the economic effects of offshore wind power. The region’s share in the supply chain was determined based on the location of the offshore wind energy sector. A comparative analysis with the Saint-Brieuc offshore wind farm in France made it possible to show the differences between the studied locations. The supply chain share of the regions surveyed was 2.28% and 6.00% in the CAPEX phase and 5.98% and 8.23% in the OPEX phase. The annual average global value in the CAPEX phase at the country level was EUR 2793 million, and at the regional level, EUR 243 million and EUR 663 million. In the OPEX phase, the corresponding values are EUR 2106 million, EUR 223 million and EUR 663 million. The average annual employment in the CAPEX phase at the national level amounted to 26,323 jobs and at the regional level, 1953 and 5804. In the OPEX phase, employment amounted to 4790, 558 and 751 jobs, respectively. On the other hand, the average annual value added in the CAPEX phase at the national level was EUR 1221 million, and at the regional level, it was EUR 106 million and EUR 290 million. In the OPEX phase, it was EUR 920 million, EUR 97 million and EUR 239 million, respectively. While not all of the findings are conclusive, in general, the domestic offshore wind industry has weaker economic linkages and lower wage levels than the location adopted for comparison. It uses more labour-intensive economic sectors with lower OPEX value added. The results of the analyses presented in this paper are of crucial importance not only for Poland, as their advantage is the possibility to present, from an economic point of view, the profitability of this type of investment in general.

Suggested Citation

  • Agnieszka Brelik & Piotr Nowaczyk & Katarzyna Cheba, 2023. "The Economic Importance of Offshore Wind Energy Development in Poland," Energies, MDPI, vol. 16(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7766-:d:1287595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenniches, Simon, 2018. "Assessing the regional economic impacts of renewable energy sources – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khadijah Iddrisu & Isaac Ofoeda & Joshua Yindenaba Abor, 2023. "Inward foreign direct investment and inclusiveness of growth: will renewable energy consumption make a difference?," International Economics and Economic Policy, Springer, vol. 20(3), pages 367-388, July.
    2. Lema, Rasmus & Bhamidipati, Padmasai Lakshmi & Gregersen, Cecilia & Hansen, Ulrich Elmer & Kirchherr, Julian, 2021. "China’s investments in renewable energy in Africa: Creating co-benefits or just cashing-in?," World Development, Elsevier, vol. 141(C).
    3. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    4. Alen Jakoplić & Dubravko Franković & Juraj Havelka & Hrvoje Bulat, 2023. "Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning," Energies, MDPI, vol. 16(14), pages 1-18, July.
    5. Hokey Min & Yohannes Haile, 2021. "Examining the Role of Disruptive Innovation in Renewable Energy Businesses from a Cross National Perspective," Energies, MDPI, vol. 14(15), pages 1-19, July.
    6. Banacloche, Santacruz & Gamarra, Ana R. & Lechon, Yolanda & Bustreo, Chiara, 2020. "Socioeconomic and environmental impacts of bringing the sun to earth: A sustainability analysis of a fusion power plant deployment," Energy, Elsevier, vol. 209(C).
    7. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    8. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    9. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    11. Banacloche, Santacruz & Cadarso, Maria Angeles & Monsalve, Fabio & Lechon, Yolanda, 2020. "Assessment of the sustainability of Mexico green investments in the road to Paris," Energy Policy, Elsevier, vol. 141(C).
    12. Allan, Grant & Comerford, David & Connolly, Kevin & McGregor, Peter & Ross, Andrew G., 2020. "The economic and environmental impacts of UK offshore wind development: The importance of local content," Energy, Elsevier, vol. 199(C).
    13. Dimitrios Stamopoulos & Petros Dimas & Ioannis Sebos & Aggelos Tsakanikas, 2021. "Does Investing in Renewable Energy Sources Contribute to Growth? A Preliminary Study on Greece’s National Energy and Climate Plan," Energies, MDPI, vol. 14(24), pages 1-18, December.
    14. Rabie Said & Muhammad Ishaq Bhatti & Ahmed Imran Hunjra, 2022. "Toward Understanding Renewable Energy and Sustainable Development in Developing and Developed Economies: A Review," Energies, MDPI, vol. 15(15), pages 1-12, July.
    15. Md Ershadul Karim & Abu Bakar Munir & Mohammad Ataul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nazmi Sellami & Nurul Aini Bani & Mohamad Zaki Hassan, 2018. "Energy Revolution for Our Common Future: An Evaluation of the Emerging International Renewable Energy Law," Energies, MDPI, vol. 11(7), pages 1-20, July.
    16. Connolly, Kevin, 2020. "The regional economic impacts of offshore wind energy developments in Scotland," Renewable Energy, Elsevier, vol. 160(C), pages 148-159.
    17. Richardson, Riley Lindsay & Buckham, Bradley & McWhinnie, Lauren Helen, 2022. "Mapping a blue energy future for British Columbia: Creating a holistic framework for tidal stream energy development in remote coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    19. Suwa, Aki, 2020. "Renewable energy and regional value: Identifying value added of public power producer and suppliers in japan," Finance Research Letters, Elsevier, vol. 37(C).
    20. José Genaro González-Hernández & Rubén Salas-Cabrera, 2021. "Wind Power Extraction Optimization by Dynamic Gain Scheduling Approximation Based on Non-Linear Functions for a WECS Based on a PMSG," Mathematics, MDPI, vol. 9(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7766-:d:1287595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.