IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7664-d1283648.html
   My bibliography  Save this article

Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference

Author

Listed:
  • Chen Wang

    (Department of Nuclear, Plasma and Radialogical Engineering, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA)

  • Xu Wu

    (Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Ziyu Xie

    (Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Tomasz Kozlowski

    (Department of Nuclear, Plasma and Radialogical Engineering, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA)

Abstract

Inverse Uncertainty Quantification (IUQ) has gained increasing attention in the field of nuclear engineering, especially nuclear thermal-hydraulics (TH), where it serves as an important tool for quantifying the uncertainties in the physical model parameters (PMPs) while making the model predictions consistent with the experimental data. In this paper, we present an extension to an existing Bayesian inference-based IUQ methodology by employing a hierarchical Bayesian model and variational inference (VI), and apply this novel framework to a real-world nuclear TH scenario. The proposed approach leverages a hierarchical model to encapsulate group-level behaviors inherent to the PMPs, thereby mitigating existing challenges posed by the high variability of PMPs under diverse experimental conditions and the potential overfitting issues due to unknown model discrepancies or outliers. To accommodate computational scalability and efficiency, we utilize VI to enable the framework to be used in applications with a large number of variables or datasets. The efficacy of the proposed method is evaluated against a previous study where a No-U-Turn-Sampler was used in a Bayesian hierarchical model. We illustrate the performance comparisons of the proposed framework through a synthetic data example and an applied case in nuclear TH. Our findings reveal that the presented approach not only delivers accurate and efficient IUQ without the need for manual tuning, but also offers a promising way for scaling to larger, more complex nuclear TH experimental datasets.

Suggested Citation

  • Chen Wang & Xu Wu & Ziyu Xie & Tomasz Kozlowski, 2023. "Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7664-:d:1283648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Jae-Hyeon Bae & Kyoungsik Chang & Gong-Hee Lee & Byeong-Cheon Kim, 2022. "Bayesian Inference of Cavitation Model Coefficients and Uncertainty Quantification of a Venturi Flow Simulation," Energies, MDPI, vol. 15(12), pages 1-18, June.
    3. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    4. Chen, Suiyao & Lu, Lu & Xiang, Yisha & Lu, Qing & Li, Mingyang, 2018. "A data heterogeneity modeling and quantification approach for field pre-assessment of chloride-induced corrosion in aging infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 123-135.
    5. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    6. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
    7. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
    8. Laura Marie Helleckes & Michael Osthege & Wolfgang Wiechert & Eric von Lieres & Marco Oldiges, 2022. "Bayesian calibration, process modeling and uncertainty quantification in biotechnology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-47, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    2. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    3. Mohseni, Morteza, 2023. "Deep learning in bifurcations of particle trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
    5. Sani I. Abba & Mohamed A. Yassin & Auwalu Saleh Mubarak & Syed Muzzamil Hussain Shah & Jamilu Usman & Atheer Y. Oudah & Sujay Raghavendra Naganna & Isam H. Aljundi, 2023. "Drinking Water Resources Suitability Assessment Based on Pollution Index of Groundwater Using Improved Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
    6. Francesco Di Maio & Nicola Pedroni & Barnabás Tóth & Luciano Burgazzi & Enrico Zio, 2021. "Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues," Energies, MDPI, vol. 14(15), pages 1-17, August.
    7. Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
    8. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    9. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    12. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    14. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    15. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    16. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    17. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    19. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
    20. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7664-:d:1283648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.