IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7392-d1272320.html
   My bibliography  Save this article

Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model

Author

Listed:
  • Xu Han

    (Graduate School of Economics, Kyoto University, Kyoto 606-8501, Japan)

  • Pim Vercoulen

    (Cambridge Econometrics, Cambridge CB1 2HT, UK
    Global Systems Institute, University of Exeter, Exeter EX4 4QE, UK)

  • Soocheol Lee

    (Faculty of Economics, Meijo University, Nagoya 468-0073, Japan)

  • Aileen Lam

    (The World Bank, Washington, DC 20433, USA)

  • Shinya Kato

    (Faculty of Economics, Yamaguchi University, Yamaguchi 753-8511, Japan)

  • Toru Morotomi

    (Graduate School of Economics, Kyoto University, Kyoto 606-8501, Japan)

Abstract

To achieve carbon neutrality in Japan by 2050, renewable energy needs to be used as the main energy source. Based on the constraints of various renewable energies, the importance of hydrogen cannot be ignored. This study aimed to investigate the diffusion of hydrogen demand technologies in various sectors and used projections and assumptions to investigate the hydrogen supply side. By performing simulations with the E3ME-FTT model and comparing various policy scenarios with the reference scenario, the economic and environmental impacts of the policy scenarios for hydrogen diffusion were analyzed. Moreover, the impact of realizing carbon neutrality by 2050 on the Japanese economy was evaluated. Our results revealed that large-scale decarbonization via hydrogen diffusion is possible (90% decrease of CO 2 emissions in 2050 compared to the reference) without the loss of economic activity. Additionally, investments in new hydrogen-based and other low-carbon technologies in the power sector, freight road transport, and iron and steel industry can improve the gross domestic product (1.6% increase in 2050 compared to the reference), as they invoke economic activity and require additional employment (0.6% increase in 2050 compared to the reference). Most of the employment gains are related to decarbonizing the power sector and scaling up the hydrogen supply sector, while a lot of job losses can be expected in the mining and fossil fuel industries.

Suggested Citation

  • Xu Han & Pim Vercoulen & Soocheol Lee & Aileen Lam & Shinya Kato & Toru Morotomi, 2023. "Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model," Energies, MDPI, vol. 16(21), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7392-:d:1272320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    2. Hector Pollitt & Jean-Francois Mercure, 2018. "The role of money and the financial sector in energy-economy models used for assessing climate and energy policy," Climate Policy, Taylor & Francis Journals, vol. 18(2), pages 184-197, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    2. Zoi Vrontisi & Ioannis Charalampidis & Ulrike Lehr & Mark Meyer & Leonidas Paroussos & Christian Lutz & Yen E. Lam-González & Anastasia Arabadzhyan & Matías M. González & Carmelo J. León, 2022. "Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    3. Mark Meyer & Martin Hirschnitz-Garbers & Martin Distelkamp, 2018. "Contemporary Resource Policy and Decoupling Trends—Lessons Learnt from Integrated Model-Based Assessments," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    4. Bachner, G. & Mayer, J. & Steininger, K.W. & Anger-Kraavi, A. & Smith, A. & Barker, T.S., 2020. "Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry," Ecological Economics, Elsevier, vol. 172(C).
    5. Yannis Dafermos & Maria Nikolaidi, 2019. "Fiscal policy and ecological sustainability," FMM Working Paper 52-2019, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    6. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    7. Dafermos, Yannis & Nikolaidi, Maria, 2019. "Fiscal policy and ecological sustainability: a post-Keynesian perspective," Greenwich Papers in Political Economy 37777, University of Greenwich, Greenwich Political Economy Research Centre.
    8. Obobisa, Emma Serwaa, 2022. "Achieving 1.5 °C and net-zero emissions target: The role of renewable energy and financial development," Renewable Energy, Elsevier, vol. 188(C), pages 967-985.
    9. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    10. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.
    11. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    12. Tabandeh, Abbas & Hossain, M.J. & Li, Li, 2022. "Integrated multi-stage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles," Applied Energy, Elsevier, vol. 319(C).
    13. Harada, Kosuke & Yabe, Kuniaki & Takami, Hirofumi & Goto, Akira & Sato, Yasushi & Hayashi, Yasuhiro, 2023. "Two-step approach for quasi-optimization of energy storage and transportation at renewable energy site," Renewable Energy, Elsevier, vol. 211(C), pages 846-858.
    14. Jesse M. Keenan & Anurag Gumber, 2019. "California climate adaptation trust fund: exploring the leveraging of cap-and-trade proceeds," Environment Systems and Decisions, Springer, vol. 39(4), pages 454-465, December.
    15. D’Orazio, Paola & Valente, Marco, 2019. "The role of finance in environmental innovation diffusion: An evolutionary modeling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 417-439.
    16. Sievers, Luisa & Breitschopf, Barbara & Pfaff, Matthias & Schaffer, Axel, 2019. "Macroeconomic impact of the German energy transition and its distribution by sectors and regions," Ecological Economics, Elsevier, vol. 160(C), pages 191-204.
    17. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    18. Flori, Andrea & Pammolli, Fabio & Spelta, Alessandro, 2021. "Commodity prices co-movements and financial stability: A multidimensional visibility nexus with climate conditions," Journal of Financial Stability, Elsevier, vol. 54(C).
    19. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    20. Bhatnagar, S. & Sharma, D., 2022. "Evolution of green finance and its enablers: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    More about this item

    Keywords

    hydrogen; carbon neutral; Japanese economy; E3ME-FTT model;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7392-:d:1272320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.