IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7152-d1263006.html
   My bibliography  Save this article

Comprehensive Characterization of Energy Saving and Environmental Benefits of Campus Photovoltaic Buildings

Author

Listed:
  • Jie Yang

    (School of Petroleum Engineering, Changzhou University, Changzhou 233016, China)

  • Baorui Cai

    (School of Petroleum Engineering, Changzhou University, Changzhou 233016, China)

  • Jingyu Cao

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Yunjie Wang

    (School of Petroleum Engineering, Changzhou University, Changzhou 233016, China)

  • Huihan Yang

    (Department of Chemical Engineering, University College London, London WC1E 6BT, UK)

  • Ping Zhu

    (College of Civil Engineering, Jiangsu Urban and Rural Construction College, Changzhou 213147, China)

Abstract

The development of campus photovoltaic buildings is a promising way to solve the problem of high energy consumption in colleges and universities. However, comprehensive study on their energy saving and environmental benefits is still insufficient. In this study, a theoretical model of a photovoltaic building roof system was preliminarily built, and the main factors affecting the power generation of campus photovoltaic buildings were analyzed. Furthermore, an experimental test platform for the campus photovoltaic building system was built, and a dynamic grid-connected strategy of “spontaneous self-use, surplus electricity connected to the grid” was creatively proposed, which points out that the grid connection rate in winter and summer vacations are about 15% and over 40%, respectively, and the annual grid connection rate is 25%. The result shows that the electricity input of the campus photovoltaic building can bear nearly 30% of the school’s annual electricity supply, which reduces the comprehensive energy consumption per unit area and per capita comprehensive energy consumption of the campus by more than 20%. The economic and environmental benefits of the 130,000 square meter campus photovoltaic building in the article are 38.8 million CNY and 20.12 million CNY, respectively, and the static investment payback period is about 7 years. The results show considerable reference value to the upgrading of campus photovoltaic buildings.

Suggested Citation

  • Jie Yang & Baorui Cai & Jingyu Cao & Yunjie Wang & Huihan Yang & Ping Zhu, 2023. "Comprehensive Characterization of Energy Saving and Environmental Benefits of Campus Photovoltaic Buildings," Energies, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7152-:d:1263006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    2. Yadav, Somil & Panda, S.K., 2020. "Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel," Renewable Energy, Elsevier, vol. 150(C), pages 136-146.
    3. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    4. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    5. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    6. Hazami, Majdi & Riahi, Ali & Mehdaoui, Farah & Nouicer, Omeima & Farhat, Abdelhamid, 2016. "Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions," Energy, Elsevier, vol. 107(C), pages 78-94.
    7. Hadavinia, Homan & Singh, Harjit, 2019. "Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems," Renewable Energy, Elsevier, vol. 139(C), pages 815-829.
    8. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    11. Alexandre Correia & Luís Miguel Ferreira & Paulo Coimbra & Pedro Moura & Aníbal T. de Almeida, 2022. "Smart Thermostats for a Campus Microgrid: Demand Control and Improving Air Quality," Energies, MDPI, vol. 15(4), pages 1-21, February.
    12. Cristofari, C. & Carutasiu, M.B. & Canaletti, J.L. & Norvaišienė, R. & Motte, F. & Notton, G., 2019. "Building integration of solar thermal systems-example of a refurbishment of a church rectory," Renewable Energy, Elsevier, vol. 137(C), pages 67-81.
    13. Sharma, Pooja & Kolhe, Mohan & Sharma, Arvind, 2020. "Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints," Renewable Energy, Elsevier, vol. 145(C), pages 1901-1909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lizhen Gao & Shidong Wang & Mingqiang Mao & Chunhui Liu & Tao Li, 2024. "Study on the Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings," Energies, MDPI, vol. 17(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    3. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    4. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    6. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    7. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    8. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    9. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    10. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    11. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    14. Rui Liang & Xichuan Zheng & Po-Hsun Wang & Jia Liang & Linhui Hu, 2023. "Research Progress of Carbon-Neutral Design for Buildings," Energies, MDPI, vol. 16(16), pages 1-50, August.
    15. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    16. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    17. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    18. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    20. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7152-:d:1263006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.