IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7119-d1261296.html
   My bibliography  Save this article

Influence of the Geometry of the Oxygen Removal Chamber on the Oxygen Concentration in a PEM Water Electrolysis System

Author

Listed:
  • Sooin Kwon

    (School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
    School of Electronical Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
    Sunbo Unitech R&D Center, 97, Centum jungang-ro, Haeundae-gu, Busan 48058, Republic of Korea)

  • Seongyong Eom

    (School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea)

  • Gyungmin Choi

    (School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea)

Abstract

In this paper, we investigate the optimization of an oxygen removal system for water electrolysis plants because high oxygen concentrations can be dangerous and compromise the quality of the hydrogen produced. The design of an oxygen removal system was investigated using numerical analysis. The results showed that the diameter of the chamber had a significant effect on the oxygen removal efficiency, and a diameter twice the size of the gas inlet was found to be optimal. The porosity of the catalyst layer also played a crucial role in the efficiency, with a lower porosity resulting in higher removal rates. Additionally, the optimal chamber length was found to be 76.8 D to achieve an oxygen mole fraction of 2.4 ppm after the chamber, which satisfied the safety criterion of 4.0 ppm. These results can aid in the design of oxygen removal systems for water electrolysis plants, providing a more efficient and safer operation.

Suggested Citation

  • Sooin Kwon & Seongyong Eom & Gyungmin Choi, 2023. "Influence of the Geometry of the Oxygen Removal Chamber on the Oxygen Concentration in a PEM Water Electrolysis System," Energies, MDPI, vol. 16(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7119-:d:1261296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    2. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    3. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    4. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    5. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    6. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    7. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    8. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    9. Pavlos Nikolaidis & Andreas Poullikkas, 2022. "A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    10. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    11. Olfa Tlili & Christine Mansilla & David Frimat & Yannick Perez, 2019. "Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan," Post-Print hal-02265824, HAL.
    12. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    14. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.
    15. Aissa Dehane & Slimane Merouani, 2022. "Microscopic Analysis of Hydrogen Production from Methane Sono-Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-16, December.
    16. Sivagowri Shanmugaratnam & Elilan Yogenthiran & Ranjit Koodali & Punniamoorthy Ravirajan & Dhayalan Velauthapillai & Yohi Shivatharsiny, 2021. "Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production," Energies, MDPI, vol. 14(24), pages 1-37, December.
    17. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Francisco Jose Durán & Fernando Dorado & Luz Sanchez-Silva, 2020. "Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool," Energies, MDPI, vol. 13(15), pages 1-15, July.
    20. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7119-:d:1261296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.