IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6791-d1246609.html
   My bibliography  Save this article

Isobaric Expansion Engines–Compressors: Thermodynamic Analysis of Multistage Vapor Driven Compressors

Author

Listed:
  • Alexander Kronberg

    (Encontech B.V. TNW/SPT, P.O. Box 217, 7500 AE Enschede, The Netherlands)

  • Maxim Glushenkov

    (Encontech B.V. TNW/SPT, P.O. Box 217, 7500 AE Enschede, The Netherlands)

  • Sander Roosjen

    (Sustainable Process Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands)

  • Sascha Kersten

    (Sustainable Process Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands)

Abstract

Isobaric expansion (IE) engines can directly convert heat into mechanical energy, making them particularly attractive for applications such as vapor-driven pumps and compressors. A recent initial assessment investigating the utilization of IE engines as vapor-driven reciprocating compressors has revealed that the vapor use efficiency is inherently low in the case of the simplest direct-acting compressor designs. Based on this analysis, it was anticipated that multistage compression can offer significant advantages for vapor-driven compressors. Therefore, this paper aims to conduct a comprehensive analytical thermodynamic analysis of direct vapor-driven multistage reciprocating compressors. The analysis considers processes without intercooling and processes with intercooling of the compressed gas between stages. The findings demonstrate that, for vapor-driven compression, the benefits of multistage compression are superior to those known for conventional compression processes. Multistage vapor-driven compression not only reduces compression work and temperature elevation but, more importantly, mitigates the adverse effects on vapor compression of the driving vapor, thereby enabling a substantial improvement in vapor utilization efficiency. Furthermore, the total volume of the IE engine compressor experiences a significant decrease with an increasing number of stages. Consequently, under specific process parameters, the overall dimensions of the engine-compressor system may also decrease as the number of stages increases. The results offer significant opportunities for energy savings in energy-intensive compression processes by replacing electrical energy with readily available low-grade heat sources (<100 °C). Such processes include hydrogen, air, and ethylene compression at high pressure.

Suggested Citation

  • Alexander Kronberg & Maxim Glushenkov & Sander Roosjen & Sascha Kersten, 2023. "Isobaric Expansion Engines–Compressors: Thermodynamic Analysis of Multistage Vapor Driven Compressors," Energies, MDPI, vol. 16(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6791-:d:1246609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    2. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    3. Delgado-Torres, Agustín M., 2009. "Solar thermal heat engines for water pumping: An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 462-472, February.
    4. Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
    5. Maxim Glushenkov & Alexander Kronberg & Torben Knoke & Eugeny Y. Kenig, 2018. "Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors," Energies, MDPI, vol. 11(1), pages 1-22, January.
    6. Markides, Christos N. & Smith, Thomas C.B., 2011. "A dynamic model for the efficiency optimization of an oscillatory low grade heat engine," Energy, Elsevier, vol. 36(12), pages 6967-6980.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    3. Tan, Jingqi & Luo, Jiaqi & Huang, Jiale & Wei, Jianjian & Jin, Tao, 2020. "A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery," Energy, Elsevier, vol. 211(C).
    4. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    5. Tan, Jingqi & Wei, Jianjian & Jin, Tao, 2020. "Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 262(C).
    6. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    7. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    8. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    9. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    10. Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
    11. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    12. Maxim Glushenkov & Alexander Kronberg & Torben Knoke & Eugeny Y. Kenig, 2018. "Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors," Energies, MDPI, vol. 11(1), pages 1-22, January.
    13. Xialai Wu & Ning Zhang & Lei Xie & Wenyan Ci & Junghui Chen & Shan Lu, 2022. "Thermoeconomic Optimization Design of the ORC System Installed on a Light-Duty Vehicle for Waste Heat Recovery from Exhaust Heat," Energies, MDPI, vol. 15(12), pages 1-24, June.
    14. Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
    15. Zhonghe Han & Peng Li & Xu Han & Zhongkai Mei & Zhi Wang, 2017. "Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery," Energies, MDPI, vol. 10(10), pages 1-23, October.
    16. Sander Roosjen & Maxim Glushenkov & Alexander Kronberg & Sascha Kersten, 2022. "Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids," Energies, MDPI, vol. 15(14), pages 1-14, July.
    17. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    18. Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
    19. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    20. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6791-:d:1246609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.