IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6763-d1245471.html
   My bibliography  Save this article

Advances in Liquid Atomization via Flash Boiling—A Global Overview

Author

Listed:
  • Tali Bar-Kohany

    (School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
    Department of Mechanical Engineering, NRCN, Beer-Sheva 8419001, Israel)

  • Merav Arogeti

    (Mechanical Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410802, Israel)

  • Avihai Malka

    (Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel)

  • Eran Sher

    (Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel)

Abstract

A wide range of recent applications require high-quality sprays that are characterized by extremely small-sized droplets, a narrow droplet size distribution, and a short breakup length. Fuel injection systems in propulsion units, energy storage, medical implementations, printings, and coatings are just a few examples. Flash-boiling atomization is a unique method that was extensively developed during the past two to three decades and has been proven to generate high-quality demanded sprays. In flash-boiling atomization, the liquid is forced to reach a metastable superheated state by either rapid heating or rapid pressure drop, where vapor bubbles nucleate, become fast-growing, and subsequently break down the liquid into a fine spray in a very short time. This present article focuses on flash-boiling atomization via rapid depressurization, which is presently more relevant to energy systems. The field of flash-boiling atomization has seen rapid growth and popularity in the past two decades. The aim of this article is to quantitatively portray the landscape and evolutionary trajectory of flash-boiling atomization research and applications and to detect new research frontiers and emerging trends in the literature on flash-boiling atomization. We briefly review the basic theories of the flash-boiling atomization mechanism present a comprehensive overview of the field, from its birth in approximately the 1970s to the present, and provide a database comprising 386 articles published on the topic of flash-boiling atomization. We visualize the intellectual structure of flash-boiling atomization research and applications and track its evolvement over the past five decades, thus providing a global overview and a comprehensive understanding of the development of flash-boiling atomization research and emerging applications.

Suggested Citation

  • Tali Bar-Kohany & Merav Arogeti & Avihai Malka & Eran Sher, 2023. "Advances in Liquid Atomization via Flash Boiling—A Global Overview," Energies, MDPI, vol. 16(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6763-:d:1245471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    2. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    3. Antonio De Nicola & Maria Luisa Villani, 2021. "Smart City Ontologies and Their Applications: A Systematic Literature Review," Sustainability, MDPI, vol. 13(10), pages 1-40, May.
    4. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    5. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    6. Ling Pan & Zeshui Xu & Marinko Skare, 2023. "Sustainable business model innovation literature: a bibliometrics analysis," Review of Managerial Science, Springer, vol. 17(3), pages 757-785, April.
    7. Homero Rodríguez-Insuasti & Néstor Montalván-Burbano & Otto Suárez-Rodríguez & Marcela Yonfá-Medranda & Katherine Parrales-Guerrero, 2022. "Creative Economy: A Worldwide Research in Business, Management and Accounting," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    8. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    9. Elena Andriollo & Alberto Caimo & Laura Secco & Elena Pisani, 2021. "Collaborations in Environmental Initiatives for an Effective “Adaptive Governance” of Social–Ecological Systems: What Existing Literature Suggests," Sustainability, MDPI, vol. 13(15), pages 1-29, July.
    10. Raf Vanderstraeten & Frédéric Vandermoere, 2021. "Inequalities in the growth of Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8635-8651, October.
    11. Raghu Raman & Hiran Lathabhai & Santanu Mandal & Chandan Kumar & Prema Nedungadi, 2023. "Contribution of Business Research to Sustainable Development Goals: Bibliometrics and Science Mapping Analysis," Sustainability, MDPI, vol. 15(17), pages 1-37, August.
    12. Hamid R. Jamali & Alireza Abbasi, 2023. "Gender gaps in Australian research publishing, citation and co-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2879-2893, May.
    13. Nuru Jingili & Solomon Sunday Oyelere & Frank Ojwang & Friday Joseph Agbo & Markus B. T. Nyström, 2023. "Virtual Reality for Addressing Depression and Anxiety: A Bibliometric Analysis," IJERPH, MDPI, vol. 20(9), pages 1-21, April.
    14. Ohlan, Ramphul & Ohlan, Anshu, 2022. "A comprehensive bibliometric analysis and visualization of smart home research," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sanchez-Alonso, Salvador, 2023. "The power of big data analytics over fake news: A scientometric review of Twitter as a predictive system in healthcare," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. Mario Pagliaro, 2021. "Did You Ask for Citations? An Insight into Preprint Citations en route to Open Science," Publications, MDPI, vol. 9(3), pages 1-10, June.
    17. Lia Marchi & Jacopo Gaspari, 2023. "Energy Conservation at Home: A Critical Review on the Role of End-User Behavior," Energies, MDPI, vol. 16(22), pages 1-22, November.
    18. Steve J. Bickley & Ho Fai Chan & Benno Torgler, 2022. "Artificial intelligence in the field of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2055-2084, April.
    19. Ramona Bran & Laurentiu Tiru & Gabriela Grosseck & Carmen Holotescu & Laura Malita, 2021. "Learning from Each Other—A Bibliometric Review of Research on Information Disorders," Sustainability, MDPI, vol. 13(18), pages 1-39, September.
    20. Yin Junjia & Aidi Hizami Alias & Nuzul Azam Haron & Nabilah Abu Bakar, 2023. "A Bibliometric Review on Safety Risk Assessment of Construction Based on CiteSpace Software and WoS Database," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6763-:d:1245471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.