IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6760-d1245339.html
   My bibliography  Save this article

Day-Ahead Bidding Strategy of a Virtual Power Plant with Multi-Level Electric Energy Interaction in China

Author

Listed:
  • Hui Sun

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yanan Dou

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Shubo Hu

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
    State Grid Liaoning Electric Power Research Institute Co., Ltd., Shenyang 110055, China)

  • Zhengnan Gao

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Zhonghui Wang

    (Electric Power Dispatching and Control Center of State Grid Liaoning Electric Power Co., Ltd., Shenyang 110055, China)

  • Peng Yuan

    (State Grid Liaoning Electric Power Research Institute Co., Ltd., Shenyang 110055, China)

Abstract

Effective aggregation and rational allocation of flexible resources are the fundamental methods for solving the problem of an insufficient flexibility adjustment ability of a power system. The flexible scheduling resources of a distribution system are often small in scale and distributed mostly by different stakeholders. A virtual power plant (VPP) gathers small resources to participate in the day-ahead electricity market, but, due to the scale and characteristics of a VPP’s internal flexible resources, it cannot reach the access threshold of a peak shaving market in some periods due to small differences. In order to solve the market bidding problem of a VPP limited by capacity, and to achieve economic goals, a virtual power plant operator (VPPO) not only needs to interact with internal subjects but also needs to interact with other subjects with flexible resources in the distribution network. In this study, an electric vehicle (EV) cluster is taken as the interactive object, and a day-ahead bidding strategy of a VPP with multi-level electric energy interaction is proposed. The VPP not only makes full-time game pricing for internal participants but also makes time-sharing bargaining with an EV operator. The validity and the rationality of the proposed strategy are verified by an example.

Suggested Citation

  • Hui Sun & Yanan Dou & Shubo Hu & Zhengnan Gao & Zhonghui Wang & Peng Yuan, 2023. "Day-Ahead Bidding Strategy of a Virtual Power Plant with Multi-Level Electric Energy Interaction in China," Energies, MDPI, vol. 16(19), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6760-:d:1245339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan C. Sarmiento-Vintimilla & Esther Torres & Dunixe Marene Larruskain & María José Pérez-Molina, 2022. "Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources," Energies, MDPI, vol. 15(3), pages 1-28, January.
    2. Shayegan-Rad, Ali & Badri, Ali & Zangeneh, Ali, 2017. "Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties," Energy, Elsevier, vol. 121(C), pages 114-125.
    3. Tang, Mengcheng & Zhuang, Weichao & Li, Bingbing & Liu, Haoji & Song, Ziyou & Yin, Guodong, 2023. "Energy-optimal routing for electric vehicles using deep reinforcement learning with transformer," Applied Energy, Elsevier, vol. 350(C).
    4. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Mohd Alsaleh & A. S. Abdul-Rahim, 2019. "Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation," Resources, MDPI, vol. 8(1), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    2. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    3. Evan S. Jones & Rosemary E. Alden & Huangjie Gong & Dan M. Ionel, 2023. "Co-Simulation of Electric Power Distribution Systems and Buildings including Ultra-Fast HVAC Models and Optimal DER Control," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    4. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    5. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    7. Forero-Quintero, Jose-Fernando & Villafáfila-Robles, Roberto & Barja-Martinez, Sara & Munné-Collado, Ingrid & Olivella-Rosell, Pol & Montesinos-Miracle, Daniel, 2022. "Profitability analysis on demand-side flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    9. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    10. Godwin C. Okwuibe & Amin Shokri Gazafroudi & Sarah Hambridge & Christopher Dietrich & Ana Trbovich & Miadreza Shafie-khah & Peter Tzscheutschler & Thomas Hamacher, 2022. "Evaluation of Hierarchical, Multi-Agent, Community-Based, Local Energy Markets Based on Key Performance Indicators," Energies, MDPI, vol. 15(10), pages 1-23, May.
    11. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Catra Indra Cahyadi & Suwarno Suwarno & Aminah Asmara Dewi & Musri Kona & Muhammad Arif & Muhammad Caesar Akbar, 2023. "Solar Prediction Strategy for Managing Virtual Power Stations," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 503-512, July.
    13. Yetuo Tan & Yongming Zhi & Zhengbin Luo & Honggang Fan & Jun Wan & Tao Zhang, 2023. "Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties," Energies, MDPI, vol. 16(15), pages 1-14, August.
    14. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    15. Seyed Hasan Mirbarati & Najme Heidari & Amirhossein Nikoofard & Mir Sayed Shah Danish & Mahdi Khosravy, 2022. "Techno-Economic-Environmental Energy Management of a Micro-Grid: A Mixed-Integer Linear Programming Approach," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    16. Zahid Ullah & Arshad & Hany Hassanin, 2022. "Modeling, Optimization, and Analysis of a Virtual Power Plant Demand Response Mechanism for the Internal Electricity Market Considering the Uncertainty of Renewable Energy Sources," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    18. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Zahid Ullah & Arshad & Hany Hassanin & James Cugley & Mohammed Al Alawi, 2022. "Planning, Operation, and Design of Market-Based Virtual Power Plant Considering Uncertainty," Energies, MDPI, vol. 15(19), pages 1-16, October.
    20. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6760-:d:1245339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.