IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6588-d1238873.html
   My bibliography  Save this article

Geomechanics for Energy and the Environment

Author

Listed:
  • Gan Feng

    (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Hongqiang Xie

    (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Ang Liu

    (Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA)

  • Reza Taherdangkoo

    (Institute of Geotechnics, TU Bergakademie Freiberg, 09599 Freiberg, Germany)

  • Qiao Lyu

    (State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China)

Abstract

Geological energy is an abundant source of energy on Earth, encompassing both fossil and non-fossil forms such as oil, natural gas, coal, geothermal energy, shale gas, and coalbed methane [...]

Suggested Citation

  • Gan Feng & Hongqiang Xie & Ang Liu & Reza Taherdangkoo & Qiao Lyu, 2023. "Geomechanics for Energy and the Environment," Energies, MDPI, vol. 16(18), pages 1-6, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6588-:d:1238873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianfa Wu & Yintong Guo & Haoyong Huang & Guokai Zhao & Qiyong Gou & Junchuan Gui & Ersi Xu, 2023. "Effect of Hydration under High Temperature and Pressure on the Stress Thresholds of Shale," Energies, MDPI, vol. 16(23), pages 1-13, November.
    2. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    3. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    4. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    6. Liu, Kouqi & Jin, Zhijun & Zeng, Lianbo & Ozotta, Ogochukwu & Gentzis, Thomas & Ostadhassan, Mehdi, 2023. "Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2," Energy, Elsevier, vol. 262(PB).
    7. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    8. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    9. Shaoqi Kong & Gan Feng & Yueliang Liu & Chuang Wen, 2023. "Energy Extraction and Processing Science," Energies, MDPI, vol. 16(14), pages 1-5, July.
    10. Jun Liu & Gan Feng & Peng Zhao, 2023. "Application and Optimization of CCUS Technology in Shale Gas Production and Storage," Energies, MDPI, vol. 16(14), pages 1-3, July.
    11. Kamila Gawel & Maksym Lozovyi & Mohammad Hossain Bhuiyan & Ruben Bjørge & Erling Fjær, 2021. "Acid Treatment as a Way to Reduce Shale Rock Mechanical Strength and to Create a Material Prone to the Formation of Permanent Well Barrier," Energies, MDPI, vol. 14(9), pages 1-14, April.
    12. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    13. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
    14. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    15. Vafaie, Atefeh & Cama, Jordi & Soler, Josep M. & Kivi, Iman R. & Vilarrasa, Victor, 2023. "Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    17. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    18. Wang, Chenyu & Li, Shujian & Zhang, Dongming & Yu, Beichen & Wang, Xiaolei, 2023. "Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale," Energy, Elsevier, vol. 271(C).
    19. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    20. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6588-:d:1238873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.