IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7778-d1288096.html
   My bibliography  Save this article

Effect of Hydration under High Temperature and Pressure on the Stress Thresholds of Shale

Author

Listed:
  • Jianfa Wu

    (Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Yintong Guo

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China)

  • Haoyong Huang

    (Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Guokai Zhao

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China)

  • Qiyong Gou

    (Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Junchuan Gui

    (Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Ersi Xu

    (Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

Abstract

The stress threshold of deep reservoir shale subjected to fracturing fluid immersion is an important factor affecting fracture initiation and propagation during fracturing. However, little information has been reported on the effect on shale of soaking at high temperature and high pressure (HTHP). In this study, immersion tests and triaxial compression tests were carried out at reservoir temperature and in-situ stress on the downhole cores with different mineral compositions. The characteristics of stress thresholds, i.e., crack initiation stress ( σ c i ), crack damage stress ( σ cd ), and peak deviator stress ( σ p ), of shale affected by the different times of soaking with low-viscosity fracturing fluid (a) and the different viscosity fracturing fluids (a, b, and c) were investigated. The results show that hydration at HTHP has a significant softening effect on the stress thresholds ( σ c i , σ cd , σ p ) of reservoir shale, but the softening rate varies for samples with different mineral compositions. The crack initiation stresses of quartz-rich and clay-rich shales treated with different soaking times and different soaking media remain almost unchanged in the range of 47 to 54% of the corresponding peak strength, while the crack initiation stresses of carbonate-rich shales are significantly affected. The ratio σ cd / σ p of quartz-rich shale is significantly affected by the different viscosity fracturing fluids (a, b) and the different times of soaking with low-viscosity fracturing fluid (a), while clay- and carbonate-rich shales are less affected. The results of this study can provide a reference for the fracturing design of deep shale gas development.

Suggested Citation

  • Jianfa Wu & Yintong Guo & Haoyong Huang & Guokai Zhao & Qiyong Gou & Junchuan Gui & Ersi Xu, 2023. "Effect of Hydration under High Temperature and Pressure on the Stress Thresholds of Shale," Energies, MDPI, vol. 16(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7778-:d:1288096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    2. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    3. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    4. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    5. Liu, Kouqi & Jin, Zhijun & Zeng, Lianbo & Ozotta, Ogochukwu & Gentzis, Thomas & Ostadhassan, Mehdi, 2023. "Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2," Energy, Elsevier, vol. 262(PB).
    6. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    7. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    8. Shaoqi Kong & Gan Feng & Yueliang Liu & Chuang Wen, 2023. "Energy Extraction and Processing Science," Energies, MDPI, vol. 16(14), pages 1-5, July.
    9. Jun Liu & Gan Feng & Peng Zhao, 2023. "Application and Optimization of CCUS Technology in Shale Gas Production and Storage," Energies, MDPI, vol. 16(14), pages 1-3, July.
    10. Kamila Gawel & Maksym Lozovyi & Mohammad Hossain Bhuiyan & Ruben Bjørge & Erling Fjær, 2021. "Acid Treatment as a Way to Reduce Shale Rock Mechanical Strength and to Create a Material Prone to the Formation of Permanent Well Barrier," Energies, MDPI, vol. 14(9), pages 1-14, April.
    11. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    12. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
    13. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    14. Vafaie, Atefeh & Cama, Jordi & Soler, Josep M. & Kivi, Iman R. & Vilarrasa, Victor, 2023. "Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    16. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    17. Wang, Chenyu & Li, Shujian & Zhang, Dongming & Yu, Beichen & Wang, Xiaolei, 2023. "Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale," Energy, Elsevier, vol. 271(C).
    18. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    19. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
    20. Gan Feng & Hongqiang Xie & Qingxiang Meng & Fei Wu & Gan Li, 2022. "Advanced Coal, Petroleum, and Natural Gas Exploration Technology," Energies, MDPI, vol. 15(23), pages 1-5, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7778-:d:1288096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.