IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6483-d1235553.html
   My bibliography  Save this article

Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel

Author

Listed:
  • Nektarios Koutsourakis

    (Environmental Research Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou E & 27 Neapoleos Str., 15341 Agia Paraskevi, Greece)

  • Ilias C. Tolias

    (Environmental Research Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou E & 27 Neapoleos Str., 15341 Agia Paraskevi, Greece)

  • Stella G. Giannissi

    (Environmental Research Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou E & 27 Neapoleos Str., 15341 Agia Paraskevi, Greece)

  • Alexandros G. Venetsanos

    (Environmental Research Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou E & 27 Neapoleos Str., 15341 Agia Paraskevi, Greece)

Abstract

Accidental release from a hydrogen car tank in a confined space like a tunnel poses safety concerns. This Computational Fluid Dynamics (CFD) study focuses on the first seconds of such a release, which are the most critical. Hydrogen leaks through a Thermal Pressure Relief Device (TPRD), forms a high-speed jet that impinges on the street, spreads horizontally, recirculates under the chassis and fills the area below it in about one second. The “fresh-air entrainment effect” at the back of the car changes the concentrations under the chassis and results in the creation of two “tongues” of hydrogen at the rear corners of the car. Two other tongues are formed near the front sides of the vehicle. In general, after a few seconds, hydrogen starts moving upwards around the car mainly in the form of buoyant blister-like structures. The average hydrogen volume concentrations below the car have a maximum of 71%, which occurs at 2 s. The largest “equivalent stoichiometric flammable gas cloud size Q9” is 20.2 m 3 at 2.7 s. Smaller TPRDs result in smaller hydrogen flow rates and smaller buoyant structures that are closer to the car. The investigation of the hydrogen dispersion during the initial stages of the leak and the identification of the physical phenomena that occur can be useful for the design of experiments, for the determination of the TPRD characteristics, for potential safety measures and for understanding the further distribution of the hydrogen cloud in the tunnel.

Suggested Citation

  • Nektarios Koutsourakis & Ilias C. Tolias & Stella G. Giannissi & Alexandros G. Venetsanos, 2023. "Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel," Energies, MDPI, vol. 16(18), pages 1-30, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6483-:d:1235553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    2. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    3. Ewelina Pawelczyk & Natalia Łukasik & Izabela Wysocka & Andrzej Rogala & Jacek Gębicki, 2022. "Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers," Energies, MDPI, vol. 15(14), pages 1-34, July.
    4. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    5. Lv, Hong & Shen, Yahao & Zheng, Tao & Zhou, Wei & Ming, Pingwen & Zhang, Cunman, 2023. "Numerical study of hydrogen leakage, diffusion, and combustion in an outdoor parking space under different parking configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    4. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    5. Khomein, Piyachai & Ketelaars, Wesley & Lap, Tijs & Liu, Gao, 2021. "Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Mehroze Iqbal & Amel Benmouna & Frederic Claude & Mohamed Becherif, 2023. "Efficient and Reliable Power-Conditioning Stage for Fuel Cell-Based High-Power Applications," Energies, MDPI, vol. 16(13), pages 1-15, June.
    7. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    8. Diana Joița & Mirela Panait & Carmen-Elena Dobrotă & Alin Diniță & Adrian Neacșa & Laura Elly Naghi, 2023. "The European Dilemma—Energy Security or Green Transition," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    11. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    12. Nurul Waheeda Mazlan & Munirah Shafiqah Murat & Chung-Jen Tseng & Oskar Hasdinor Hassan & Nafisah Osman, 2022. "Lattice Expansion and Crystallite Size Analyses of NiO-BaCe 0. 54 Zr 0. 36 Y 0. 1 O 3-δ Anode Composite for Proton Ceramic Fuel Cells Application," Energies, MDPI, vol. 15(22), pages 1-10, November.
    13. Marina Pinzón & Paula Sánchez & Ana Raquel de la Osa & Amaya Romero & Antonio de Lucas-Consuegra, 2022. "Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia," Energies, MDPI, vol. 15(21), pages 1-25, November.
    14. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    15. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    16. Fernandes, Marina Domingues & Bistritzki, Victor & Domingues, Rosana Zacarias & Matencio, Tulio & Rapini, Márcia & Sinisterra, Rubén Dario, 2020. "Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Sadvakasova, Asemgul K. & Kossalbayev, Bekzhan D. & Zayadan, Bolatkhan K. & Bolatkhan, Kenzhegul & Alwasel, Saleh & Najafpour, Mohammad Mahdi & Tomo, Tatsuya & Allakhverdiev, Suleyman I., 2020. "Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    19. Gregory Trencher & Achmed Edianto, 2021. "Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany," Energies, MDPI, vol. 14(4), pages 1-26, February.
    20. Yuanliang Liu & Yinan Qiu & Zhan Liu & Gang Lei, 2022. "Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact," Energies, MDPI, vol. 15(11), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6483-:d:1235553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.