IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6395-d1232354.html
   My bibliography  Save this article

Toward a “Smart-Green” Future in Cities: System Dynamics Study of Megacities in China

Author

Listed:
  • Rui Hu

    (School of Urban Economy and Public Administration, Capital University of Economics and Business, No. 21 Zhangjialukou, Fengtai District, Beijing 100070, China)

  • Xinliang Han

    (Asset Management Office, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing 100083, China)

Abstract

This study investigates the development trend of smart-green cities, focusing on seven megacities in China. It addresses three issues that are common in urban green development, including the relationship between “smart” and “green”, the scenario analysis of green development, and the uniqueness of megacities in green development. System dynamics modeling is applied. The simulation results reveal an “S”-shaped development curve for both aspects, indicating a gradual and accelerating growth pattern. Notably, the curve representing energy consumption lags behind the curve for smart city development by approximately three years. After 2030, when the smart city construction is expected to be completed, the proportion of the tertiary industry and investment in science and technology will play a significant role in limiting energy consumption. This study concludes by providing policy suggestions, including the need for long-term plans with phased targets, considering the specificity of megacities, and addressing external influences.

Suggested Citation

  • Rui Hu & Xinliang Han, 2023. "Toward a “Smart-Green” Future in Cities: System Dynamics Study of Megacities in China," Energies, MDPI, vol. 16(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6395-:d:1232354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenni Viitanen & Richard Kingston, 2014. "Smart Cities and Green Growth: Outsourcing Democratic and Environmental Resilience to the Global Technology Sector," Environment and Planning A, , vol. 46(4), pages 803-819, April.
    2. Filiou, Despoina & Kesidou, Effie & Wu, Lichao, 2023. "Are smart cities green? The role of environmental and digital policies for Eco-innovation in China," World Development, Elsevier, vol. 165(C).
    3. Yituan Liu & Qihang Li & Zheng Zhang, 2022. "Do Smart Cities Restrict the Carbon Emission Intensity of Enterprises? Evidence from a Quasi-Natural Experiment in China," Energies, MDPI, vol. 15(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryu Zhang & Xiaoyu He & Peng Xiao, 2022. "Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    2. Trencher, Gregory, 2019. "Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 117-128.
    3. Chuanlin Wang & Guowan Yan & Juan Ou, 2023. "Does Digitization Promote Green Innovation? Evidence from China," IJERPH, MDPI, vol. 20(5), pages 1-27, February.
    4. Justyna Przywojska & Aldona Podgórniak-Krzykacz & Justyna Wiktorowicz, 2019. "Perceptions of Priority Policy Areas and Interventions for Urban Sustainability in Polish Municipalities: Can Polish Cities Become Smart, Inclusive and Green?," Sustainability, MDPI, vol. 11(14), pages 1-24, July.
    5. Adrienne Csizmady & Zoltán Ferencz & Lea Kőszeghy & Gergely Tóth, 2021. "Beyond the Energy Poor/Non Energy Poor Divide: Energy Vulnerability and Mindsets on Energy Generation Modes in Hungary," Energies, MDPI, vol. 14(20), pages 1-19, October.
    6. Romano Fistola & Mariano Gallo & Rosa Anna La Rocca & Francesca Russo, 2020. "The Effectiveness of Urban Cycle Lanes: From Dyscrasias to Potential Solutions," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    7. Kris Hartley, 2023. "Public Perceptions About Smart Cities: Governance and Quality-of-Life in Hong Kong," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 166(3), pages 731-753, April.
    8. Stephen Leitheiser & Alexander Follmann, 2020. "The social innovation–(re)politicisation nexus: Unlocking the political in actually existing smart city campaigns? The case of SmartCity Cologne, Germany," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 894-915, March.
    9. Amitrajeet A. Batabyal & Peter Nijkamp, 2019. "Creative capital, information and communication technologies, and economic growth in smart cities," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(2), pages 142-155, February.
    10. Adrian Buttazzoni & Marta Veenhof & Leia Minaker, 2020. "Smart City and High-Tech Urban Interventions Targeting Human Health: An Equity-Focused Systematic Review," IJERPH, MDPI, vol. 17(7), pages 1-23, March.
    11. Dorota Bednarska-Olejniczak & Jarosław Olejniczak & Libuše Svobodová, 2019. "Towards a Smart and Sustainable City with the Involvement of Public Participation—The Case of Wroclaw," Sustainability, MDPI, vol. 11(2), pages 1-33, January.
    12. Joshua Long & Jennifer L Rice, 2019. "From sustainable urbanism to climate urbanism," Urban Studies, Urban Studies Journal Limited, vol. 56(5), pages 992-1008, April.
    13. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    14. Volkov, Artiom & Morkunas, Mangirdas & Balezentis, Tomas & Streimikiene, Dalia, 2022. "Are agricultural sustainability and resilience complementary notions? Evidence from the North European agriculture," Land Use Policy, Elsevier, vol. 112(C).
    15. Jakub Zawieska & Hanna Obracht-Prondzyńska & Ewa Duda & Danuta Uryga & Małgorzata Romanowska, 2022. "In Search of the Innovative Digital Solutions Enhancing Social Pro-Environmental Engagement," Energies, MDPI, vol. 15(14), pages 1-18, July.
    16. Hannele Ahvenniemi & Aapo Huovila, 2021. "How do cities promote urban sustainability and smartness? An evaluation of the city strategies of six largest Finnish cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4174-4200, March.
    17. Fromhold-Eisebith, Martina & Eisebith, Günter, 2019. "What can Smart City policies in emerging economies actually achieve? Conceptual considerations and empirical insights from India," World Development, Elsevier, vol. 123(C), pages 1-1.
    18. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Strategic principles for smart city development: A multiple case study analysis of European best practices," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 70-97.
    19. Xingwei Li & Yicheng Huang & Xiangxue Li & Xiang Liu, 2023. "Mechanism of smart city policy on the carbon emissions of construction enterprises in the Yangtze River Economic Belt: a perspective of the PESTEL model and the pollution halo hypothesis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    20. Zhao, Shuliang & Teng, Linjiao & Arkorful, Vincent Ekow & Hu, Hui, 2023. "Impacts of digital government on regional eco-innovation: Moderating role of dual environmental regulations," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6395-:d:1232354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.