IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6301-d1228814.html
   My bibliography  Save this article

Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland

Author

Listed:
  • Klaudia Ligęza

    (AGH Doctoral School, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Mariusz Łaciak

    (Faculty of Drilling, Oil and Gas, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Bartłomiej Ligęza

    (Doctoral School, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland)

Abstract

In Poland, hydrogen production should be carried out using renewable energy sources, particularly wind energy (as this is the most efficient zero-emission technology available). According to hydrogen demand in Poland and to ensure stability as well as security of energy supply and also the realization of energy policy for the EU, it is necessary to use offshore wind energy for direct hydrogen production. In this study, a centralized offshore hydrogen production system in the Baltic Sea area was presented. The goal of our research was to explore the possibility of producing hydrogen using offshore wind energy. After analyzing wind conditions and calculating the capacity of the proposed wind farm, a 600 MW offshore hydrogen platform was designed along with a pipeline to transport hydrogen to onshore storage facilities. Taking into account Poland’s Baltic Sea area wind conditions with capacity factor between 45 and 50% and having obtained results with highest monthly average output of 3508.85 t of hydrogen, it should be assumed that green hydrogen production will reach profitability most quickly with electricity from offshore wind farms.

Suggested Citation

  • Klaudia Ligęza & Mariusz Łaciak & Bartłomiej Ligęza, 2023. "Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland," Energies, MDPI, vol. 16(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6301-:d:1228814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    3. Francesco Calise, 2022. "Recent Advances in Green Hydrogen Technology," Energies, MDPI, vol. 15(16), pages 1-4, August.
    4. Baldi, Francesco & Coraddu, Andrea & Kalikatzarakis, Miltiadis & Jeleňová, Diana & Collu, Maurizio & Race, Julia & Maréchal, François, 2022. "Optimisation-based system designs for deep offshore wind farms including power to gas technologies," Applied Energy, Elsevier, vol. 310(C).
    5. Zhen Liu & He Wang & Bowen Zhou & Dongsheng Yang & Guangdi Li & Bo Yang & Chao Xi & Bo Hu, 2022. "Optimal Operation Strategy for Wind–Hydrogen–Water Power Grids Facing Offshore Wind Power Accommodation," Sustainability, MDPI, vol. 14(11), pages 1-23, June.
    6. Youngmin Cho & Sanglae Lee & Jinseok Lim & Jaewoo Lee, 2022. "Economic Analysis of P2G Green Hydrogen Generated by Existing Wind Turbines on Jeju Island," Energies, MDPI, vol. 15(24), pages 1-44, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    2. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    3. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    4. Raphael Souza de Oliveira & Meire Jane Lima de Oliveira & Erick Giovani Sperandio Nascimento & Renelson Sampaio & Aloísio Santos Nascimento Filho & Hugo Saba, 2023. "Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    5. Bohan Wang & Zhiwei Sun & Yuanyuan Zhao & Zhiyan Li & Bohai Zhang & Jiken Xu & Peng Qian & Dahai Zhang, 2024. "The Energy Conversion and Coupling Technologies of Hybrid Wind–Wave Power Generation Systems: A Technological Review," Energies, MDPI, vol. 17(8), pages 1-24, April.
    6. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    7. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    8. Linjun Shi & Fan Yang & Yang Li & Tao Zheng & Feng Wu & Kwang Y. Lee, 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    9. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Sustainable Energy Development: History and Recent Advances," Energies, MDPI, vol. 16(20), pages 1-44, October.
    10. Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
    11. Adam Stock & Matthew Cole & Mathieu Kervyn & Fulin Fan & James Ferguson & Anup Nambiar & Benjamin Pepper & Michael Smailes & David Campos-Gaona, 2023. "Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection," Energies, MDPI, vol. 16(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6301-:d:1228814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.