IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6281-d1228051.html
   My bibliography  Save this article

Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel

Author

Listed:
  • Edisson S. Castaño Mesa

    (Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, Colombia)

  • Sebastián H. Quintana

    (Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, Colombia)

  • Iván D. Bedoya

    (Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, Colombia)

Abstract

This study presents the implementation of a micro-generation system and its operation procedure, based on a dual fuel diesel engine using natural gas as the primary fuel and conventional diesel as the pilot fuel. On the other hand, the evaluation and validation results by experimental testing of a model according to International Energy Agency—IEA—Annex 42, applied to dual fuel diesel micro-cogeneration system, are also presented. The control procedure for experimental operation depends of both inputs’ electric power generation demand and desired substitution level due a given natural gas availability. The heat recovery system of the micro-generation system uses a gas–liquid compact heat exchanger that was selected and implemented, where wasted heat from exhaust gases was transferred to liquid water as a cool fluid. Effective operation engine performance was determined by measurement of masses’ flow rate such as inlet air, diesel and natural gas, and also operation parameters such as electric power generation and recovered thermal power were measured. Electric power was generated by using an electric generator and then dissipated as heat by using an electric resistors bank with a dissipation capacity of 18 kW . Natural gas fuel was supplied and measured by using a sonic nozzle flowmeter; in addition, natural gas composition was close to 84.7 % CH 4 , 0.74 % CO 2 and 1.58 % N 2 , with the rest of them as higher hydrocarbons. The highest overall efficiency (electric efficiency plus heat recovery efficiency) was 52.3 % at 14.4 kW of electric power generation and 0 % of substitution level. Several substitution levels were tested at each engine electric power generation, obtaining the maximum substitution level of 61 % at 17.7 kW of electric power generation. Finally, model prediction results were closed to experimental results, both stationary and transient. The maximum error presented was close to 20 % associated to thermal efficiency. However, errors for all other variables were lower than 10 % for most of micro-cogeneration system operation points.

Suggested Citation

  • Edisson S. Castaño Mesa & Sebastián H. Quintana & Iván D. Bedoya, 2023. "Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel," Energies, MDPI, vol. 16(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6281-:d:1228051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    2. Dimitriou, Pavlos & Tsujimura, Taku & Suzuki, Yasumasa, 2018. "Hydrogen-diesel dual-fuel engine optimization for CHP systems," Energy, Elsevier, vol. 160(C), pages 740-752.
    3. O'Connell, N. & Röll, A. & Lechner, R. & Luo, T. & Brautsch, M., 2019. "PODE-blend as pilot fuel in a biomethane dual fuel engine: Experimental analysis of performance, combustion and emissions characteristics," Renewable Energy, Elsevier, vol. 143(C), pages 101-111.
    4. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Yang, G. & Wang, R.Z., 2016. "Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls," Energy, Elsevier, vol. 101(C), pages 447-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    3. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    4. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    5. Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
    6. Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
    7. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    8. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    9. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
    10. Praveen Cheekatamarla & Ahmad Abu-Heiba, 2020. "A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches," Energies, MDPI, vol. 13(14), pages 1-26, July.
    11. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    12. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    13. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    14. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    15. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.
    16. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    17. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    18. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    19. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    20. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6281-:d:1228051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.