IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5537-d1199547.html
   My bibliography  Save this article

Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility

Author

Listed:
  • Yi Lin

    (State Grid Fujian Economic Research Institute, Fuzhou 350011, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Wei Lin

    (State Grid Fujian Economic Research Institute, Fuzhou 350011, China)

  • Wei Wu

    (State Grid Fujian Economic Research Institute, Fuzhou 350011, China)

  • Zhenshan Zhu

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

Abstract

The volatility and uncertainty of high-penetration renewable energy pose significant challenges to the stability of the power system. Current research often fails to consider the insufficient system flexibility during real-time scheduling. To address this issue, this paper proposes a flexibility scheduling method for high-penetration renewable energy power systems that considers flexibility index constraints. Firstly, a quantification method for flexibility resources and demands is introduced. Then, considering the constraint of the flexibility margin index, optimization scheduling strategies for different time scales, including day-ahead scheduling and intra-day scheduling, are developed with the objective of minimizing total operational costs. The intra-day optimization is divided into 15 min and 1 min time scales, to meet the flexibility requirements of different time scales in the power system. Finally, through simulation studies, the proposed strategy is validated to enhance the system’s flexibility and economic performance. The daily operating costs are reduced by 3.1%, and the wind curtailment rate is reduced by 4.7%. The proposed strategy not only considers the economic efficiency of day-ahead scheduling but also ensures a sufficient margin to cope with the uncertainty of intra-day renewable energy fluctuations.

Suggested Citation

  • Yi Lin & Wei Lin & Wei Wu & Zhenshan Zhu, 2023. "Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5537-:d:1199547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Tang & Yuqian Liu & Jia Ning & Jingbo Zhao, 2017. "Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Xi Lu & Michael B. McElroy & Wei Peng & Shiyang Liu & Chris P. Nielsen & Haikun Wang, 2016. "Challenges faced by China compared with the US in developing wind power," Nature Energy, Nature, vol. 1(6), pages 1-6, June.
    3. Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antans Sauhats & Roman Petrichenko & Marija Zima-Bockarjova, 2023. "A Pragmatic Approach to the Economic Assessment of Green Synthetic Methane Power in the Baltics," Energies, MDPI, vol. 16(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    2. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    5. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    6. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    7. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    8. Zhuang, Minghao & Lu, Xi & Peng, Wei & Wang, Yanfen & Wang, Jianxiao & Nielsen, Chris P. & McElroy, Michael B., 2021. "Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations’ Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    10. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    11. He, X. & Wang, F. & Wallington, T.J. & Shen, W. & Melaina, M.W. & Kim, H.C. & De Kleine, R. & Lin, T. & Zhang, S. & Keoleian, G.A. & Lu, X. & Wu, Y., 2021. "Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Changyi LIU & Rong ZHU & Yang WANG, 2017. "Economic Assessment and Policy Analysis on Wind Energy Development in China," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-17, December.
    14. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    16. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Zheng, Biao & Zhang, Yuquan W. & Yin, Haitao & Geng, Yong, 2021. "The limited role of stock market in financing new energy development in China: An investigation using firms’ high-frequency data," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 651-667.
    18. Browning, Morgan S. & Lenox, Carol S., 2020. "Contribution of offshore wind to the power grid: U.S. air quality implications," Applied Energy, Elsevier, vol. 276(C).
    19. Xu, Shengqing, 2021. "The paradox of the energy revolution in China: A socio-technical transition perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Liao, Shiwu & Yao, Wei & Han, Xingning & Wen, Jinyu & Cheng, Shijie, 2017. "Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data," Applied Energy, Elsevier, vol. 203(C), pages 816-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5537-:d:1199547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.