IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5534-d1199489.html
   My bibliography  Save this article

Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste

Author

Listed:
  • Swarna Saha

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Md Tahmid Islam

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Joshua Calhoun

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Toufiq Reza

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

Abstract

Shrimp shell is a popularly consumed seafood around the globe which generates a substantial quantity of solid wet waste. Hydrothermal carbonization (HTC) could be a viable pathway to convert wet shrimp shell waste into energy-dense hydrochar. The present study aims to assess the fuel properties, physicochemical attributes, and combustion properties of shrimp shell hydrochar generated with a wide range of HTC temperatures (110–290 °C). Results showed that a rise in carbonization rate results in a decline in mass yield to as low as 25.7% with the increase in HTC temperature. Thermogravimetric analysis indicates shrimp shell hydrochars to be more thermally stable than raw dried feedstock. Results from the bomb calorimeter report a maximum HHV of 27.9 MJ/kg for SS-290, showing a 13% increase in energy densification compared to raw shrimp shell. The slagging and fouling indices determined for the hydrochars further assisted in addressing the concern regarding increasing ash content changing from 17.0% to 36.6%. Lower ratings of the slagging index, fouling index, alkali index, and chlorine content for hydrochars at higher temperature indicate the reduced probability of reactor fouling during combustion. The findings of the analysis demonstrate that HTC is a promising approach for transforming shrimp shell waste into a potential fuel replacement.

Suggested Citation

  • Swarna Saha & Md Tahmid Islam & Joshua Calhoun & Toufiq Reza, 2023. "Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5534-:d:1199489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    2. Shrestha, Ankita & Acharya, Bishnu & Farooque, Aitazaz A., 2021. "Study of hydrochar and process water from hydrothermal carbonization of sea lettuce," Renewable Energy, Elsevier, vol. 163(C), pages 589-598.
    3. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Numan Luthfi & Takashi Fukushima & Xiulun Wang & Kenji Takisawa, 2024. "Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass," Resources, MDPI, vol. 13(4), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    2. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    3. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    4. Yulin Hu & Rhea Gallant & Shakirudeen Salaudeen & Aitazaz A. Farooque & Sophia He, 2022. "Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    5. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    6. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    7. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    10. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    11. Clara Lisseth Mendoza Martinez & Ekaterina Sermyagina & Esa Vakkilainen, 2021. "Hydrothermal Carbonization of Chemical and Biological Pulp Mill Sludges," Energies, MDPI, vol. 14(18), pages 1-18, September.
    12. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    13. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.
    14. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    15. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    16. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    17. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    18. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    19. Dinko Đurđević & Saša Žiković & Tomislav Čop, 2022. "Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Xu, Zhi-Xiang & Song, Hao & Zhang, Shu & Tong, Si-Qi & He, Zhi-Xia & Wang, Qian & Li, Bin & Hu, Xun, 2019. "Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5534-:d:1199489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.