IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5491-d1198126.html
   My bibliography  Save this article

India’s Renewable Energy Portfolio: An Investigation of the Untapped Potential of RE, Policies, and Incentives Favoring Energy Security in the Country

Author

Listed:
  • Bharat Dubey

    (Department of Electrical Engineering, Rajasthan Technical University, Rawatbhata Road, Kota 324010, India)

  • Seema Agrawal

    (Department of Electrical Engineering, Rajasthan Technical University, Rawatbhata Road, Kota 324010, India)

  • Ashok Kumar Sharma

    (Department of Electrical Engineering, Rajasthan Technical University, Rawatbhata Road, Kota 324010, India)

Abstract

Access to inexpensive, safe, consistent, and clean energy is a critical necessity for all to achieve the SDGs. India’s renewable energy (RE) currently accounts for more than a third of the 482 GW of installed capacity and more than 40 percent of power production (including large-scale hydropower). Reforms such as the establishment of a single national power grid have improved access to electricity for people, and the ambitious development of renewable energy, which is the world’s third-largest energy generator and third-largest electricity user, has helped in achieving these aims. As a result, the expansion of national targets signifies and reflects the country’s optimism and goal for the forthcoming generation. Standardization of the guidelines and development of the stable grid and transmission networks will only enable the country to achieve the ambitious target of 500 GW of green and clean energy by 2030. This paper highlights the important development in the power sector regarding the energy security of India. As well as specifically examining the initiative of NSMs for achieving the 2030 targets, the key challenges, and the way forward to increase the cumulative installed capacity, comprehensive studies of various policies and government initiatives are also discussed. Furthermore, the key challenges usually faced by the developers in the industry, along with the steep decline and rise in the tariffs of solar projects and the previous trends in capacity installation, are also pointed out. This research work also highlights the potential key challenges to achieving the targets, and will thus provide a focus for power developers, policy makers, researchers, and industry practitioners and help with their planning. In the current scenario, the supply of food and the clean energy nexus are required to meet the demands of people’s livelihoods.

Suggested Citation

  • Bharat Dubey & Seema Agrawal & Ashok Kumar Sharma, 2023. "India’s Renewable Energy Portfolio: An Investigation of the Untapped Potential of RE, Policies, and Incentives Favoring Energy Security in the Country," Energies, MDPI, vol. 16(14), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5491-:d:1198126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schmid, Gisèle, 2012. "The development of renewable energy power in India: Which policies have been effective?," Energy Policy, Elsevier, vol. 45(C), pages 317-326.
    2. Plutshack, Victoria & Sengupta, Subhanjan & Sahay, Arunaditya & Viñuales, Jorge E., 2019. "New and renewable energy social enterprises accessing government support: Findings from India," Energy Policy, Elsevier, vol. 132(C), pages 367-378.
    3. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2016. "Economic and environmental effectiveness of renewable energy policy instruments: Best practices from India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 487-498.
    4. Behuria, Pritish, 2020. "The politics of late late development in renewable energy sectors: Dependency and contradictory tensions in India’s National Solar Mission," World Development, Elsevier, vol. 126(C).
    5. Thapar, Sapan, 2022. "Centralized vs decentralized solar: A comparison study (India)," Renewable Energy, Elsevier, vol. 194(C), pages 687-704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    2. Shekhar, Jai & Suri, Dhruv & Somani, Priyanshi & Lee, Stephen J. & Arora, Mahika, 2021. "Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    4. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    5. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    6. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    7. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    8. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    9. Joseph M. Kiesecker & Shivaprakash K. Nagaraju & James R. Oakleaf & Anthony Ortiz & Juan Lavista Ferres & Caleb Robinson & Srinivas Krishnaswamy & Raman Mehta & Rahul Dodhia & Jeffrey S. Evans & Micha, 2023. "The Road to India’s Renewable Energy Transition Must Pass through Crowded Lands," Land, MDPI, vol. 12(11), pages 1-18, November.
    10. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Barroco, Jose & Herrera, Maria, 2019. "Clearing barriers to project finance for renewable energy in developing countries: A Philippines case study," Energy Policy, Elsevier, vol. 135(C).
    12. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    13. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    14. Gupta, Sandeep Kumar & Purohit, Pallav, 2013. "Renewable energy certificate mechanism in India: A preliminary assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 380-392.
    15. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    16. Fung, Ivan W.H. & Tsang, Y.T. & Tam, Vivian W.Y. & Xu, Y.T. & Mok, Edmund C.K., 2017. "A review on historic building conservation: A comparison between Hong Kong and Macau systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 927-942.
    17. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Weko, Silvia & Goldthau, Andreas, 2022. "Bridging the low-carbon technology gap? Assessing energy initiatives for the Global South," Energy Policy, Elsevier, vol. 169(C).
    19. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    20. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5491-:d:1198126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.