IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5415-d1195452.html
   My bibliography  Save this article

Applicability of Rice Husk Residue Generated by the Silica Extraction Process to Anaerobic Digestion for Methane Production

Author

Listed:
  • Seon Young Park

    (Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
    Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
    These authors contributed equally to this work.)

  • Byoung Seung Jeon

    (Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
    These authors contributed equally to this work.)

  • Yang Mo Gu

    (Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
    Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea)

  • Ji Yeon Park

    (Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
    Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea)

  • Hyunook Kim

    (Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea)

  • Byoung-In Sang

    (Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea)

  • Eunsung Kan

    (Texas A&M AgriLife Research Center, Stephenville, TX 76401, USA
    Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
    Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, TX 76401, USA)

  • Okkyoung Choi

    (Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea)

  • Jin Hyung Lee

    (Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea)

Abstract

Rice husks are a feedstock of biogenic silica because of their high silica content. After silica extraction, a solid residue comprising mostly carbohydrates is present. Solid residue valorization is important for closed-loop systems using rice husk and has minimal negative environmental impacts. In this study, we used solid rice husk that was generated by silica extractionto anaerobic digestion for producing biomethane. The rice husk residue was characterized in terms of total solids, volatile solids, pH, composition, and particle size. Changing the characteristics increased biogas production by 2.48-fold compared to that of raw rice husk. The residue produced 166.4 mL-biogas g −1 vs. and 100.4 mL CH 4 g −1 VS, much more than previously reported. Microbial community analysis, which was conducted to investigate the biological reasons for increased biogas and methane, found increased Bacteroidetes levels in the rice husk samples. Among archaeal communities, Bathyarchaeota was more abundant in all rice husk samples than in the inoculum. The rice husk residue contained more operational taxonomic units than other samples. These changes in the microbial community significantly influenced the anaerobic digestion of the rice husk residue and improved methane production. Our findings provide a basis for the cleaner utilization of rice husk residue to produce renewable energy.

Suggested Citation

  • Seon Young Park & Byoung Seung Jeon & Yang Mo Gu & Ji Yeon Park & Hyunook Kim & Byoung-In Sang & Eunsung Kan & Okkyoung Choi & Jin Hyung Lee, 2023. "Applicability of Rice Husk Residue Generated by the Silica Extraction Process to Anaerobic Digestion for Methane Production," Energies, MDPI, vol. 16(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5415-:d:1195452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yalei & Chen, Xiaohua & Gu, Yu & Zhou, Xuefei, 2015. "A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment," Applied Energy, Elsevier, vol. 160(C), pages 39-48.
    2. Jinyoung Chun & Jin Hyung Lee, 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    2. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    3. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    4. Arthur Chevalier & Philippe Evon & Florian Monlau & Virginie Vandenbossche & Cecilia Sambusiti, 2023. "Twin-Screw Extrusion Mechanical Pretreatment for Enhancing Biomethane Production from Agro-Industrial, Agricultural and Catch Crop Biomasses," Waste, MDPI, vol. 1(2), pages 1-18, May.
    5. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    6. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Akobi, Chinaza & Yeo, Hyeongu & Hafez, Hisham & Nakhla, George, 2016. "Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass," Applied Energy, Elsevier, vol. 184(C), pages 548-559.
    8. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    9. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Ma, Shuaishuai & Wang, Hongliang & Li, Longrui & Gu, Xiaohui & Zhu, Wanbin, 2021. "Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    12. Lisbet Mailin López González & Monika Heiermann, 2021. "Effect of Liquid Hot Water Pretreatment on Hydrolysates Composition and Methane Yield of Rice Processing Residue," Energies, MDPI, vol. 14(11), pages 1-14, June.
    13. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    14. Hossein Beidaghy Dizaji & Thomas Zeng & Volker Lenz & Dirk Enke, 2022. "Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications," Sustainability, MDPI, vol. 14(9), pages 1-5, April.
    15. Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.
    16. Veronika Chaloupková & Tatiana Ivanova & Petr Hutla & Monika Špunarová, 2021. "Ash Melting Behavior of Rice Straw and Calcium Additives," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    17. Xiaorui Yang & Jing Zhao & Jinhua Liang & Jianliang Zhu, 2020. "Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    18. Ji Yeon Park & Yang Mo Gu & Seon Young Park & Ee Taek Hwang & Byoung-In Sang & Jinyoung Chun & Jin Hyung Lee, 2021. "Two-Stage Continuous Process for the Extraction of Silica from Rice Husk Using Attrition Ball Milling and Alkaline Leaching Methods," Sustainability, MDPI, vol. 13(13), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5415-:d:1195452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.